Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles

Big Ideas Math Geometry Answers Chapter 5

If you are looking across the web for better preparation resources regarding the Big Ideas Math Geometry Ch 5 Congruent Triangles then this is the one stop destination for all your needs. For better understanding of the concepts we have compiled all the Big Ideas Math Geometry Answers Ch 5 Congruent Triangles in a simple and easy to understand language. Boost your math skills and have a deeper understanding of concepts taking help from the Congruent Triangles BIM Book Geometry Solution Key.

Big Ideas Math Book Geometry Answer Key Chapter 5 Congruent Triangles

Prepare using the Big Ideas Math Book Geometry chapter 5 Congruent Triangles Answer Key and get a good hold of the entire concepts. Clarify all your doubts taking help of the BIM Book Geometry Ch 5 Congruent Triangles Solutions provided. Simply tap on the BIM Geometry Chapter 5 Congruent Triangles Answers and prepare the corresponding topic in no time. Big Ideas Math Geometry Congruent Triangles Solution Key covers questions from Lessons 5.1 to 5.8, Practice Tests, Assessment Tests, Chapter Tests, etc. Attempt the exam with confidence and score better grades in exams.

Congruent Triangles Maintaining Mathematical Proficiency

Find the coordinates of the midpoint M of the segment with the given endpoints. Then find the distance between the two points.

Question 1.
P(- 4, 1) and Q(0, 7)
Answer:
The given points are:
P (-4, 1), Q (0, 7)
We know that,
The midpoint M of the segment with the 2 endpoints is:
( \(\frac{x1 + x2}{2}\), \(\frac{y1 + y2}{2}\) )
Let the give points are:
(x1, y1) and (x2, y2)
So,
By comparing the given poits,
We will get
x1 = -4, x2 = 0, y1 = 1, y2 = 7
Hence,
The midpoint M = ( \(\frac{-4 + 0}{2}\), \(\frac{1 + 7}{2}\) )
= ( \(\frac{-4}{2}\), \(\frac{8}{2}\) )
= (-2, 4)
Hence, from the above,
We can conclude that the midpoint M of the segment with the given endpoints is: (-2, 4)

Question 2.
G(3, 6) and H(9, – 2)
Answer:
The given points are:
G (3, 6), H (9, -2)
We know that,
The midpoint M of the segment with the 2 endpoints is:
( \(\frac{x1 + x2}{2}\), \(\frac{y1 + y2}{2}\) )
Let the give points are:
(x1, y1) and (x2, y2)
So,
By comparing the given poits,
We will get
x1 = 3, x2 = 9, y1 = 6, y2 = -2
Hence,
The midpoint M = ( \(\frac{3 + 9}{2}\), \(\frac{6 – 2}{2}\) )
= ( \(\frac{12}{2}\), \(\frac{4}{2}\) )
= (6, 2)
Hence, from the above,
We can conclude that the midpoint M of the segment with the given endpoints is: (6, 2)

Question 3.
U(- 1, – 2) and V(8, 0)
Answer:
The given points are:
U (-1, -2), V (8, 0)
We know that,
The midpoint M of the segment with the 2 endpoints is:
( \(\frac{x1 + x2}{2}\), \(\frac{y1 + y2}{2}\) )
Let the give points are:
(x1, y1) and (x2, y2)
So,
By comparing the given poits,
We will get
x1 = -1, x2 = 8, y1 = -2, y2 = 0
Hence,
The midpoint M = ( \(\frac{-1 + 8}{2}\), \(\frac{-2 + 0}{2}\) )
= ( \(\frac{7}{2}\), \(\frac{-2}{2}\) )
= ( \(\frac{7}{2}\), -1 )
Hence, from the above,
We can conclude that the midpoint M of the segment with the given endpoints is: ( \(\frac{7}{2}\), -1 )

Solve the equation.

Question 4.
7x + 12 = 3x
Answer:
The given equation is:
7x + 12 = 3x
So,
7x – 3x = 12
4x = 12
x = \(\frac{12}{4}\)
x = 3
Hence, from the above,
We can conclude that the value of x is: 3

Question 5.
14 – 6t = t
Answer:
The given equation is:
14 – 6t = t
So,
14 = 6t + t
7t = 14
t = \(\frac{14}{7}\)
t = 2
Hence, from the above,
We can conclude that the value of t is: 2

Question 6.
5p + 10 = 8p + 1
Answer:
The given equation is:
5p + 10 = 8p + 1
So,
5p – 8p = 1 – 10
-3p = -9
3p = 9
p = \(\frac{9}{3}\)
p = 3
Hence, from the above,
We can conclude that the value of p is: 3

Question 7.
w + 13 = 11w – 7
Answer:
The given equation is:
w + 13 = 11w – 7
So,
w – 11w = -7 – 13
-10w = -20
10w = 20
w = \(\frac{20}{10}\)
w = 2
Hence, from the above,
We can conclude that the value of w is: 2

Question 8.
4x + 1 = 3 – 2x
Answer:
The given equation is:
4x + 1 = 3 – 2x
So,
4x + 2x = 3 – 1
6x = 2
x = \(\frac{2}{6}\)
x = \(\frac{1}{3}\)
Hence, from the above,
We can conclude that the value of x is: \(\frac{1}{3}\)

Question 9.
z – 2 = 4 + 9z
Answer:
The given equation is:
z – 2 = 4 + 9z
So,
z – 9z = 4 + 2
-8z = 6
z = –\(\frac{6}{8}\)
z = –\(\frac{3}{4}\)
Hence, from the above,
We can conclude that the value of z is: –\(\frac{3}{4}\)

Question 10.
ABSTRACT REASONING
Is it possible to find the length of a segment in a coordinate plane without using the Distance Formula? Explain your reasoning.
Answer:
Yes, it is possible to find the length of a segment in a coordinate plane without using the distance formula
Since the segment is a portion of a line, we can use the graph to calculate the distance of a segment even though it would not provide accurate results.
Hence,
We use the distance formula to find the length of a segment in a coordinate plane

Congruent Triangles Mathematical Practices

Monitoring Progress

Classify each statement as a definition, a postulate, or a theorem. Explain your reasoning.

Question 1.
In a coordinate plane, two non-vertical lines are perpendicular if and only if the product of their slopes is – 1.
Answer:
The given statement is:
In a coordinate plane, two non-vertical lines are perpendicular if and only if the product of their slopes is – 1.
We know that,
According to the “parallel and perpendicular lines theorem”, two non-vertical lines are perpendicular if and only if the product of their slopes is -1
Hence, from the above,
We can conclude that the given statement is a Theorem

Question 2.
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.
Answer:
The given statement is:
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.
We know that,
According to the “Linear pair perpendicular theorem”,
When two straight lines intersect at a point and form a linear pair of congruent angles, then the lines are perpendicular
Hence, from the above,
We can conclude that the given statement is a Theorem

Question 3.
If two lines intersect to form a right angle. then the lines are perpendicular.
Answer:
The given statement is:
If two lines intersect to form a right angle. then the lines are perpendicular.
We know that,
According to the “Perpendicular lines theorem”,
When two lines intersect to form a right angle, the lines are perpendicular
Hence, from the above,
We can conclude that the given statement is a Theorem

Question 4.
Through any two points, there exists exactly one line.
Answer:
The given statement is:
Through any two points, there exists exactly one line
We know that,
Between two points, only one line can be drawn and we don’t need any proof to prove the above statement
We know that,
The statement that is true without proof to prove is called “Postulate”
Hence, from the above,
We can conclude that the given statement is a Postulate

5.1 Angles of Triangles

Exploration 1

Writing a Conjecture

Work with a partner.

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 1

a. Use dynamic geometry software to draw any triangle and label it ∆ABC.
Answer:
By using the dynamic geometry software, the triangle drawn is:

b. Find the measures of the interior angles of the triangle.
Answer:
From part (a),
We can observe that the vertices of the triangle are: A, B, and C
Let the interior angles of the vertices A, B, and C be α, β, and γ respectively
Hence,
The measures of the given triangle are:

Hence, from the above,
The measures of the interior angles are:
α = 62.1°, β = 64.1°, and γ = 53.8°

c. Find the sum of the interior angle measures.
Answer:
From part (b),
The measures of the interior angles are:
α = 62.1°, β = 64.1°, and γ = 53.8°
Hence,
The sum of the interior angles = 62.1° + 64.1° + 53.1° = 180°
Hence, from the above,
We can conclude that the sum of the interior angle measures is: 180°

d. Repeat parts (a)-(c) with several other triangles. Then write a conjecture about the sum of the measures of the interior angles of a triangle.
Answer:
The representation of the 3 different triangles and their internal angle measures is:

Hence, from the above,
We can conclude that the conjecture about the sum of the measures of the interior angles of a triangle is:
The sum of the internal angle measures of a triangle is always: 180°

CONSTRUCTING VIABLE ARGUMENTS
To be proficient in math, you need to reason inductively about data and write conjectures.
Answer:
Inductive reasoning:
Inductive reasoning is the process of arriving at a conclusion based on a set of observations.
Inductive reasoning is used in geometry in a similar way.
Conjecture:
A statement you believe to be true based on inductive reasoning.

Exploration 2

Writing a Conjecture

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 2

Work With a partner.

a. Use dynamic geometry software to draw any triangle and label it ∆ABC.
Answer:
The triangle drawn by using the dynamic geometry software is:

Hence, from the above,
We can conclude that the vertices of the triangle are: A, B, and C

b. Draw an exterior angle at any vertex and find its measure.
Answer:
From part (a),
The vertices of the triangle are: A, B, and C
Let the external angle measures of the triangle are: α, β, and γ
Hence,
The representation of the external angle measures of the triangle are:

Hence,
From the above,
We can conclude that
The external angle measures of the triangle are:
α = 310.7°, β = 299.3°, and γ = 290°

c. Find the measures of the two nonadjacent interior angles of the triangle.
Answer:
From part (b),
The external angle measures of the triangle are:
α = 310.7°, β = 299.3°, and γ = 290°
Hence,
The representation of the non-adjacent interior angles and the external angle measures of the triangle are:

Hence, from the above,
The angle measures of two non-adjacent sides are:
α = 70°, β = 60.7°, and γ = 49.3°

d. Find the sum of the measures of the two nonadjacent interior angles. Compare this sum to the measure of the exterior angle.
Answer:
From part (b),
The external angle measures of the triangle are:
α = 310.7°, β = 299.3°, and γ = 290°
From part (c),
The measures of the two non-adjacent interior angles are:
α = 70°, β = 60.7°, and γ = 49.3°
Now,
The sum of the measures of the external angles of the triangle are:
α + β + γ = 310.7° + 299.3°+ 290°
= 900.0°
The sum of the measures of the two non-adjacent interior angles is:
α + β + γ = 70° + 60.7° + 49.3°
= 180.0
Hence, from the above,
We can conclude that the sum of the measures of the external angles is 5 times the sum of the measures of the two non-adjacent interior angles

e. Repeat parts (a)-(d) with several other triangles. Then write a conjecture that compares the measure of an exterior angle with the sum of the measures of the two nonadjacent interior angles.
Answer:

Hence, from the above,
We can conclude that
The external angle measure of a vertex for a given triangle = 360° – (Internal angle measure of a vertex that we are finding the external angle measure)
The sum of the internal angle measures of the triangle is: 180°

Communicate Your Answer

Question 3.
How are the angle measures of a triangle related?
Answer:
The angle measures of a triangle are related as shown below:
The external angle measure of a vertex for a given triangle = 360° – (Internal angle measure of a vertex that we are finding the external angle measure)
The sum of the internal angle measures of the triangle is: 180°

Question 4.
An exterior angle of a triangle measures 32° What do you know about the measures of the interior angles? Explain your reasoning.
Answer:
It is given that an exterior angle of a triangle measures 32°
We know that,
The external angle measure of a vertex for a given triangle = 360° – (Internal angle measure of a vertex that we are finding the external angle measure)
So,
32° = 360° – (The internal angle measure of 32°)
The internal angle measure of 32° = 360° – 32°
The interior angle measure of 32° = 328°
Hence, from the above,
We can conclude that the interior angle measure of a triangle for an external angle measure of 32° is: 328°

Lesson 5.1 Angles of Triangles

Monitoring Progress

Question 1.
Draw an obtuse isosceles triangle and an acute scalene triangle.
Answer:
The figures of an obtuse isosceles triangle and an acute triangle are as follows:

Question 2.
∆ABC has vertices A(0, 0), B(3, 3), and C(- 3, 3), Classify the triangle by its sides. Then determine whether it is a right triangle.
Answer:
The given points are:
A (0, 0), B (3, 3), and C (-3, 3)
and the triangle is ΔABC
We know that,
To find whether the given triangle is a right-angled triangle or not,
We have to prove,
AC² = AB² + BC²
Where,
AC is the distance between A and C points
AB is the distance between A and B points
BC is the distance between B and C points
We know that,
The distance between 2 points = √(x2 – x1)² + (y2 – y1)²
Now,
Let the given points be considered as A(x1, y1), B(x2, y2), and C( x3, y3)
So,
AB = √(3 – 0)² + (3 – 0)² = √3² + 3²
= √9 + 9 = √18
BC = √(-3 – 3)² + (3 – 3)²
= √(-6)² + 0²
= √6² = 6
AC = √(-3 – 0)² + (3 – 0)²
= √(-3)² + 3²
= √9 + 9 = √18
Now,
AC² = AB² + BC²
(√18)² = (√18)² + 6²
18 = 18 + 36
18 ≠54
Hence, from the above,
We can conclude that the given triangle is not a right-angled triangle

Question 3.
Find the measure of ∠1
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 3
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 3
We know that,
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles
From the given triangle,
The exterior angle is: (5x – 10)°
The interior angles are: 40°, 3x°, ∠1
So,
(5x – 10)° = 40° + 3x°
5x° – 3x° = 40° + 10°
2x° = 50°
x = 50° ÷ 2
x = 25°
So,
The interior angles are 40°, 3 (25)°, ∠1
= 40°, 75°, ∠1
We know that,
The sum of the interior angles of a triangle is: 180°
So,
40° + 75° + ∠1 = 180°
115° + ∠1 = 180°
∠1 = 180° – 115°
∠1 = 65°
Hence, from the above,
We can conclude that the value of ∠1 is: 65°

Question 4.
Find the measure of each acute angle.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 36
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 36
We know that,
The sum of the interior angles in a triangle is: 180°
From the given figure,
The interior angles of the right-angled triangle are: 90°, 2x°, and (x – 6)°
So,
90° + 2x° + (x – 6)° = 180°
84°+ 3x° = 180°
3x° = 180° – 84°
3x° = 96°
x = 96° ÷ 3°
x = 32°
So,
The measure of each acute angle is 90°, 2x°, (x – 6)°
= 90°, 2(32)°, (32 – 6)°
= 90°, 64°, 26°
Hence, from the above,
We can conclude that,
The measure of each acute angle is 90°, 64°, and 26°

Exercise 5.1 Angles of Triangles

Vocabulary and Core Concept Check

Question 1.
WRITING
Can a right triangle also be obtuse? Explain our reasoning.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 1

Question 2.
COMPLETE THE SENTENCE
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two ____________ interior angles.
Answer:
The given statement is:
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two ____________ interior angles.
Hence,
The completed form of the given statement is:
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, classify the triangle by its sides and by measuring its angles.

Question 3.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 4
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 3

Question 4.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5
We know that,
“|” represents the “Congruent” or “Equal” in geometry
So,
From the given figure,
We can observe that all three sides of the given triangle are equal
We know that,
If a triangle has all the sides equal, then the triangle is called an “Equilateral triangle”
Hence, from the above,
We can conclude that the ΔLMN is an “Equilateral triangle”

Question 5.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 6
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 5

Question 6.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 7
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 7
We know that,
If any side is not equal to each other in the triangle, then the triangle is called a “Scalene triangle”
The angle greater than 90° is called as “Obtuse angle”
An angle less than 90° is called an “Acute angle”
Hence, from the above,
We can conclude that ΔABC is an “Acute scalene triangle”

In Exercises 7-10, classify ∆ABC by its sides. Then determine whether it is a right triangle.

Question 7.
A(2, 3), B(6, 3), (2, 7)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 7

Question 8.
A(3, 3), B(6, 9), (6, – 3)
Answer:
The given points are:
A (3, 3), B(6, 9), and C (6, -3)
We know that,
To find whether the given triangle is a right angle or not,
We have to prove,
AC² = AB² + BC²
Where,
AC is the distance between points A and C
AB is the distance between points A and B
BC is the distance between points B and C
The slope of any one side must be equal to -1
Now,
Let the given points be
A (x1, y1), B(x2, y2), and C (x3, y3)
So,
A (x1, y1)= (3, 3), B (x2, y2) = (6, 9), and C (x3, y3) = (6, -3)
We know that,
The distance between 2 points = √(x2 – x1)² + (y2 – y1)²
So,
AB = √(6 – 3)² + (9 – 3)²
= √3² + 6²
= √9 + 36 = √45
BC = √6 – 6)² + (-3 – 9)²
= √0 + 12²
= √12² = 12
AC = √(6 – 3)² + (-3 – 3)²
= √(3)² + (-6)²
= √9 + 36 = √45
So,
From the length of the sides,
We can say that the given triangle is an Isosceles triangle,
We know that,
Slope (m) = \(\frac{y2 – y1} {x2 – x1}\)
So,
Slope of AB = \(\frac{9 – 3} {6 – 3}\)
= \(\frac{6} {3}\)
= 2
Slope of BC = \(\frac{-9 – 3} {6 – 6}\)
= \(\frac{-12} {0}\)
= Undefined
Slope of AC = \(\frac{-3 – 3} {6 – 3}\)
= \(\frac{-6} {3}\)
= -2
Hence, from the above,
We can conclude that the given triangle is not a right triangle

Question 9.
A(1, 9), B(4, 8), C(2, 5)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 9

Question 10.
A(- 2, 3), B(0, – 3), C(3, – 2)
Answer:
The given points are:
A (-2, 3), B(0, -3), and C (3, -2)
We know that,
To find whether the given triangle is a right angle or not,
We have to prove,
AC² = AB² + BC²
Where,
AC is the distance between points A and C
AB is the distance between points A and B
BC is the distance between points B and C
The slope of any one side must be equal to -1
Now,
Let the given points be
A (x1, y1), B(x2, y2), and C (x3, y3)
So,
A (x1, y1)= (-2, 3), B (x2, y2) = (0, -3), and C (x3, y3) = (3, -2)
We know that,
The distance between 2 points = √(x2 – x1)² + (y2 – y1)²
So,
AB = √(0 – [-2])² + (3 – 3)²
= √2² + 0²
= √4 + 0 = 2
BC = √3 – 0)² + (-2 -[-3] )²
= √9 + 1²
= √10
AC = √(3 – [-2])² + (-2 – 3)²
= √(5)² + (-5)²
= √25 + 25 = √50
Now,
AC² = AB² + BC²
50 = 10 + 4
50 ≠ 14
So,
From the length of the sides,
We can say that the given triangle is a scalene triangle since all the lengths of the sides are different
We know that,
Slope (m) = \(\frac{y2 – y1} {x2 – x1}\)
So,
Slope of AB = \(\frac{9 – 3} {6 – 3}\)
= \(\frac{6} {3}\)
= 2
Slope of BC = \(\frac{-9 – 3} {6 – 6}\)
= \(\frac{-12} {0}\)
= Undefined
Slope of AC = \(\frac{-3 – 3} {6 – 3}\)
= \(\frac{-6} {3}\)
= -2
Hence, from the above,
We can conclude that the given triangle is not a right triangle

In Exercises 11 – 14. find m∠1. Then classify the triangle by its angles

Question 11.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 8
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 11

Question 12.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 9
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 9
We know that,
The sum of interior angles in a triangle is: 180°
So,
From the above,
The interior angles of the given triangle are: 40°,  30°,  ∠1
Now,
40° + 30° + ∠1 = 180°
70 + ∠1 = 180°
∠1 = 180° – 70°
∠1 = 110°
We know that,
The angle greater than 90° is called an “Obtuse angle”
Hence, from the above,
We can conclude that the given triangle is an “Obtuse angled triangle”

Question 13.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 10
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 13

Question 14.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 11
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 11
We know that,
The sum of interior angles in a triangle is: 180°
So,
From the above,
The interior angles of the given triangle are: 60°,  60°,  ∠1
Now,
60° + 60° + ∠1 = 180°
120 + ∠1 = 180°
∠1 = 180° – 120°
∠1 = 60°
We know that,
An angle less than 90° is called an “Acute angle”
The triangle that all the angles 60° is called an “Equilateral triangle”
Hence, from the above,
We can conclude that the given triangle is an “Equilateral triangle”

In Exercises 15-18, find the measure of the exterior angle.

Question 15.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 12
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 15

Question 16.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 13
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 13
We know that,
An exterior angle is equal to the sum of the two non-adjacent interior angles in a triangle
So,
(2x – 2)° = x° + 45°
2x° – x° = 45° + 2°
x = 47°
Hence,
The measure of the exterior angle is: (2x – 2)°
= (2 (47) – 2)°
= (94 – 2)°
= 92°
Hence, from the above,
We can conclude that the measure of the exterior angle is: 92°

Question 17.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 14
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 17

Question 18.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 15
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 15
We know that,
An exterior angle is equal to the sum of the two non-adjacent interior angles in a triangle
So,
(7x – 16)° = (x + 8)° + 4x°
7x° – 5x° = 16° + 8°
2x = 24°
x = 24° ÷ 2
x = 12°
Hence,
The measure of the exterior angle is: (7x – 16)°
= (7 (12) – 16)°
= (84 – 16)°
= 68°
Hence, from the above,
We can conclude that the measure of the exterior angle is: 68°

In Exercises 19-22, find the measure of each acute angle.

Question 19.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 16
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 19

Question 20.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 17
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 17
From the given figure,
We can observe that one angle is 90° and the 2 sides are perpendicular
So,
We can say that the given triangle is a right-angled triangle
We know that,
The sum of interior angles of a triangle is: 180°
So,
x° + (3x + 2)° + 90° = 180°
4x° + 2° + 90° = 180°
4x° = 180° – 90° – 2°
4x° = 88°
x = 88° ÷ 4°
x = 22°
So,
The 2 acute angle measures are: x° and (3x + 2)°
= 22° and (3(22) + 2)°
= 22° and (66 + 2)°
= 22° and 68°
Hence, from the above,
We can conclude that the 2 acute angle measures are: 22° and 68°

Question 21.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 18
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 21

Question 22.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 19
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 19
From the given figure,
We can observe that one angle is 90° and the 2 sides are perpendicular
So,
We can say that the given triangle is a right-angled triangle
We know that,
The sum of interior angles of a triangle is: 180°
So,
(19x – 1)° + (13x – 5)° + 90° = 180°
32x° – 6° + 90° = 180°
32x° = 180° – 90° – 6°
4x° = 84°
x = 84° ÷ 4°
x = 21°
So,
The 2 acute angle measures are: (19x – 1)° and (13x – 5)°
= (19 (21) – 1)° and (13(21) – 5)°
= 398° and (273 – 5)°
= 398° and 268°
Hence, from the above,
We can conclude that the 2 acute angle measures are: 398° and 268°

In Exercises 23-26. find the measure of each acute angle in the right triangle.

Question 23.
The measure of one acute angle is 5 times the measure of the other acute angle.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 23

Question 24.
The measure of one acute angle is times the measure of the other acute angle.
Answer:

Question 25.
The measure of one acute angle is 3 times the sum of the measure of the other acute angle and 8.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 25

Question 26.
The measure of one acute angle is twice the difference of the measure of the other acute angle and 12.
Answer:
The given statement is:
The measure of one acute angle is twice the difference of the measure of the other acute angle and 12.
So,
x° + [2 (x – 12)]° = 90°
x° + 2x° – 2(12)° = 90°
3x° – 24° = 90°
3x° = 90° + 24°
3x° = 114°
x = 114° ÷ 3
x = 38°
So,
The 2 acute angle measures are: x°, 2 (x – 12)°
= 38°, 2 (38 – 12)°
= 38°, 2(26)°
= 38° , 52°
Hence, from the above,
We can conclude that the acute angle measures are: 38°, 52°

ERROR ANALYSIS
In Exercises 27 and 28, describe and correct the error in finding m∠1.

Question 27.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 20
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 27

Question 28.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 21
Answer:
We know that,
The exterior angle of a triangle is equal to the sum of the non-adjacent interior angles of a triangle
So,
From the figure,
The external angle is: ∠1
The interior angles are 80°, 50°
So,
∠1 = 80° + 50°
∠1 = 130°
Now,
The interior angle measure of ∠1= 180° – (External angle measure of 130°)
= 180° – 130°
= 50°
Hence, from the above,
The internal angle measure of ∠1 is: 50°

In Exercises 29-36, find the measure of the numbered angle.

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 22

Question 29.
∠1
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 29

Question 30.
∠2
Answer:
We know that,
The external angle measure is equal to the sum of the non-adjacent interior angles
So,
∠2 = 90° + 40°
∠2 = 130°

Question 31.
∠3
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 31

Question 32.
∠3
Answer:
From the above figure,
∠2 = ∠4
Hence, from the above,
We can conclude that
∠2 = ∠4 = 130°

Question 33.
∠5
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 33

Question 34.
∠6
Answer:
The external angle measure is equal to the sum of the non-adjacent interior angles
So,
∠6 = 90° + ∠3
∠6 = 90° + 50°
∠6 = 140°

Question 35.
∠7
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 35

Question 36.
∠8
Answer:
The external angle measure is equal to the sum of the non-adjacent interior angles
So,
∠8 = 90° + ∠1
∠6 = 90° + 50°
∠6 = 140°

Question 37.
USING TOOLS
Three people are standing on a stage. The distances between the three people are shown in the diagram. Classify the triangle by its sides and by measuring its angles.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 23
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 37

Question 38.
USING STRUCTURE
Which of the following sets of angle measures could form a triangle? Select all that apply.
(A) 100°, 50°, 40°
Answer:
The given angles are: 100°, 50°, 40°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 100° + 50° + 40°
= 100° + 90°
= 190°
Hence, from the above,
We can conclude that the given angles do not form a triangle

(B) 96°, 74°, 10°
Answer:
The given angles are: 96°, 74°, 10°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 96° + 74° + 10°
= 96° + 84°
= 180°
Hence, from the above,
We can conclude that the given angles forms a triangle

(C) 165°, 113°, 82°
Answer:
The given angles are: 165°, 113°, 82°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 165° + 113° + 82°
= 165° + 195°
= 360°
But,
We know that,
The sum of exterior angles of a triangle is: 360°
Hence, from the above,
We can conclude that the given angles forms a triangle

(D) 101°, 41°, 38°
Answer:
The given angles are: 101°, 41°, 38°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 101° + 38° + 41°
= 101° + 79°
= 180°
Hence, from the above,
We can conclude that the given angles forms a triangle

(E) 90°, 45°, 45°
Answer:
The given angles are: 90°, 45°, 45°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 90° + 45° + 45°
= 90° + 90°
= 180°
Hence, from the above,
We can conclude that the given angles forms a triangle

(F) 84°, 62°, 34°
Answer:
The given angles are: 84°, 62°, 34°
We know that,
The sum of the angles of a triangle should be equal to 180°
So,
The sum of the given angles = 84° + 62° + 34°
= 84° + 96°
= 180°
Hence, from the above,
We can conclude that the given angles forms a triangle

Question 39.
MODELING WITH MATHEMATICS
You are bending a strip of metal into an isosceles triangle for a sculpture. The strip of metal is 20 inches long. The first bend is made 6 inches from one end. Describe two ways you could complete the triangle.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 39

Question 40.
THOUGHT-PROVOKING
Find and draw an object (or part of an object) that can be modeled by a triangle and an exterior angle. Describe the relationship between the interior angles of the triangle and the exterior angle in terms of the object.
Answer:

From the above figure,
We can say that
The sum of the interior angles of a given triangle is: 180°
The sum of the exterior angles of a given triangle is: 360°
The relation between the interior angles and the exterior angles is:
The exterior angle measure = Sum of the two non-adjacent interior angles

Question 41.
PROVING A COROLLARY
Prove the Corollary to the Triangle Sum Theorem (Corollary 5. 1).
Given ∆ABC is a right triangle
Prove ∠A and ∠B are complementary
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 24
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 41

Question 42.
PROVING A THEOREM
Prove the Exterior Angle Theorem (Theorem 5.2).
Given ∆ABC, exterior ∠ACD
Prove m∠A + m∠B = m∠ACD

Answer:
It is given that
In ΔABC, the exterior angle is ∠ACD
We have to prove that
m∠A + m∠B = m∠ACD
Proof:

Hence, from the above,
We can conclude that
m∠A + m∠B = m∠ACD is proven

Question 43.
CRITICAL THINKING
Is it possible to draw an obtuse isosceles triangle? obtuse equilateral triangle? If so, provide examples. If not, explain why it is not possible.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 43

Question 44.
CRITICAL THINKING
Is it possible to draw a right isosceles triangle? right equilateral triangle? If so, provide an example. If not, explain why it is not possible.
Answer:
It is possible to draw a right isosceles triangle but it is not possible to draw a right equilateral triangle
We know that,
In a triangle, if the length of the 2 sides are equal and one angle is a right-angle, then, it is called an “Right Isosceles triangle”
In a triangle, if the length of all the sides are equal and each angle is 60°, then it is an “Equilateral triangle”
Hence,
From the above definitions,
We can observe that it is possible to draw right isosceles triangle but it is not possible to dran a right equilateral triangle

Question 45.
MATHEMATICAL CONNECTIONS
∆ABC is isosceles.
AB = x, and BC = 2x – 4.
a. Find two possible values for x when the perimeter of ∆ABC is 32.
b. How many possible values are there for x when the perimeter of ∆ABC is 12?
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 45

Question 46.
HOW DO YOU SEE IT?
Classify the triangles, in as many ways as possible. without finding any measurements.
a. Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 26
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 26
From the figure,
We can observe that all the length of the sides of the triangle are equal
We know that,
The triangle that has the length of all the sides equal is called an “Equilateral triangle”
Hence, from the above,
We can conclude that the given triangle is an “Equilateral triangle”

b. Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 27
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 27
From the figure,
We can observe that the lengths of all the 3 sides are different
We know that,
The triangle that has all the different side lengths is called a “Scalene triangle”
Hence, from the above,
We can conclude that the given triangle is called a “Scalene triangle”

c. Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 28
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 28
From the figure,
We can observe that the length of all the 3 sides are different and 1 angle is obtuse i.e., greater than 90°
We know that,
The triangle that has any angle obtuse is called an “Obtuse angled triangle”
Hence, from the above,
We can conclude that the given triangle is an “Obtuse angled scalene triangle”

d. Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 29
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 29
From the figure,
We can observe that 1 angle is 90° and the 2 sides are perpendicular to each other
We know that,
The triangle that has an angle of 90° and the slope -1 is called a “Right-angled triangle”
Hence, from the above,
We can conclude that the given triangle is called a “Right-angled triangle”

Question 47.
ANALYZING RELATIONSHIPS
Which of the following could represent the measures of an exterior angle and two interior angles of a triangle? Select all that apply.
A) 100°, 62°, 38°
(B) 81°, 57°, 24°
(C) 119°, 68°, 49°
(D) 95°, 85°, 28°
(E) 92°, 78°, 68°
(F) 149°, 101°, 48°
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 47

Question 48.
MAKING AN ARGUMENT
Your friend claims the measure of an exterior angle will always be greater than the sum of the nonadjacent interior angle measures. Is your friend correct? Explain your reasoning.
Answer:
No, your friend is not correct

Explanation:
We know that,
According to the exterior angle theorem,
The external angle measure is always equal to the sum of the non-adjacent internal angle measures
But,
According to your friend,
The external angle measure will always be greater than the sum of the non-adjacent interior angle measures
Hence, from the above,
We can conclude that your friend is not correct

MATHEMATICAL CONNECTIONS
In Exercises 49-52, find the values of x and y.

Question 49.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 30
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 49

Question 50.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 31
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 31
From the figure,
We have to obtain the values of x and y
Now,
By using the alternate angles theorem,
x = 118°
Now,
By using the exterior angle theorem,
x = y + 22°
y = x – 22°
y = 118° – 22°
y = 96°
Hence, from the above,
We can conclude that the values of x and y are: 118° and 96° respectively

Question 51.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 32
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 51

Question 52.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 33
Answer:
The given figure is:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 33
From the above figure,
We have to find the values of x and y
Now,
By using the sum of interior angle measures,
x° + 64° + 90° = 180°
x° + 154° = 180°
x° = 180° – 154°
x° = 26°
Now,
By using the exterior angle theorem,
y° = x° + 64°
y° = 26° + 64°
y° = 90°
Hence, from the above,
We can conclude that the values of x and y are: 26° and 90° respectively

Question 53.
PROVING A THEOREM
Use the diagram to write a proof of the Triangle Sum Theorem (Theorem 5. 1). Your proof should be different from the proof of the Triangle Sum Theorem shown in this lesson.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 34
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 53.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 53.2

Maintaining Mathematical Proficiency

Use the diagram to find the measure of the segment or angle.

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 35

Question 54.
m∠KHL
Answer:
From the given figures,
We can observe that
∠ABC = ∠GHK
∠KHL = ∠GHK / 2
So,
(6x + 2)° = (3x + 1)° + (5x – 27)°
6x – 3x – 5x = 1 – 27 – 2
6x – 8x = -27 – 1
-2x = -28
2x = 28
x = 28 ÷ 2
x = 14
So,
∠KHL = ∠GHK / 2
= [(3 (14) + 1)° + (5 (14) – 27)°] / 2
= [43° + 43°] / 2
= 86° / 2
= 43°
Hence, from the above,
We can conclude that
∠KHL = 43°

Question 55.
m∠ABC
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 55

Question 56.
GH
Answer:
From the given figures,
We can observe that
AB = GH
So,
3y = 5y – 8
3y – 5y = -8
-2y = -8
2y = 8
y = 8 ÷ 2
y = 4
So,
The value of GH = 3y = 3 (4) = 12
Hence, from the above,
We can conclude that the value of GH is: 12

Question 57.
BC
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.1 a 57

5.2 Congruent Polygons

Exploration 1

Describing Rigid Motions

Work with a partner: of the four transformations you studied in Chapter 4, which are rigid motions? Under a rigid motion. why is the image of a triangle always congruent to the original triangle? Explain your reasoning.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 37
Answer:
Rigid motion occurs in geometry when an object moves but maintains its shape and size, which is unlike non-rigid motions, such as dilations, in which the object’s size changes. All rigid motion starts with the original object, called the pre-image, and results in the transformed object, called the image.
There are 4 types of rigid motion. They are:
a. Translation
b. Rotation
c. Reflection
d. Glide reflection
We know that,
Rotation only occurs in terms of 90° or 180°
Now,
The given transformations are:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 37
So,
From the above figure,
The first figure and the second figure are different
The second figure and the third figure are the same in shape
The first figure and the fourth figure are the same in shape
So,
We can say that the first and the fourth figures are rigid motions
W can say that the second and the third figures are rigid motions
In the second and the third figures,
The “Rotation” takes place i.e., the second figure is rotated 180° keeping the original shape
In the first and the fourth figures,
The “Reflection” takes place i.e., the first figure is reflected keeping the original shape
Now,
The image of the triangle is always congruent to the original triangle because of the “Translation” i.e., the original triangle and the image of the triangle have the same sides and the same angles but not in the same position.

Exploration 2

Finding a Composition of Rigid Motions

Work with a partner. Describe a composition of rigid motions that maps ∆ABC to ∆DEF. Use dynamic geometry software to verify your answer.
LOOKING FOR STRUCTURE
To be proficient in math, you need to look closely to discern a pattern or structure.

a. ∆ABC ≅ ∆DEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 38
Answer:

b. ∆ABC ≅ ∆DEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 39
Answer:

c. ∆ABC ≅ ∆DEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 40
Answer:

d. ∆ABC ≅ ∆DEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 41
Answer:

Communicate Your Answer

Question 3.
Given two congruent triangles. how can you use rigid motions to map one triangle to the other triangle?
Answer:

Question 4.
The vertices of ∆ABC are A(1, 1), B(3, 2), and C(4, 4). The vertices of ∆DEF are D(2, – 1), E(0, 0), and F(- 1, 2). Describe a composition of rigid motions that maps ∆ABC to ∆DEF.
Answer:

Lesson 5.2 Congruent Polygons

Monitoring Progress

In the diagram, ABGH ≅ CDEF.

Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 42

Question 1.
Identify all pairs of congruent corresponding parts.
Answer:

Question 2.
Find the value of x.
Answer:

Question 3.
In the diagram at the left. show that ∆PTS ≅ ∆RTQ.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 43
Answer:

Use the diagram.

Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 44

Question 4.
Find m∠DCN.
Answer:

Question 5.
What additional information is needed to conclude that ∆NDC ≅ ∆NSR?
Answer:

Exercise 5.2 Congruent Polygons

Question 1.
WRITING
Based on this lesson. what information do you need to prove that two triangles are congruent? Explain your reasoning.
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 1

Question 2.
DIFFERENT WORDS, SAME QUESTION
Which is different? Find “both” answers.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 45

Is ∆ABC ≅ ∆RST?
Answer:

Is ∆KJL ≅ ∆SRT?
Answer:

Is ∆JLK ≅ ∆STR?
Answer:

Is ∆LKJ ≅ ∆TSR?
Answer:

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4. identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.

Question 3.
∆ABC ≅ ∆DEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 46
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 3

Question 4.
GHJK ≅ ∆QRST
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 47
Answer:

In Exercises 5-8, ∆XYZ ≅ ∆MNL. Copy and complete the statement.

Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 48

Question 5.
m∠Y = ______
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 5

Question 6.
m∠M = ______
Answer:

Question 7.
m∠Z = _______
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 7

Question 8.
XY= _______
Answer:

In Exercises 9 and 10. find the values of x and y.

Question 9.
ABCD ≅ EFGH
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 49
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 9

Question 10.
∆MNP ≅ ∆TUS
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 50
Answer:

In Exercises 11 and 12. show that the polygons are congruent. Explain your reasoning.

Question 11.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 51
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 11

Question 12.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 52
Answer:

In Exercises 13 and 14, find m∠1.

Question 13.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 53
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 13

Question 14.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 54
Answer:

Question 15.
PROOF
Triangular postage stamps, like the ones shown, are highly valued by stamp collectors. Prove that ∆AEB ≅ ∆CED.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 55
Given \(\overline{A B}\) || \(\overline{D C}\), \(\overline{A B}\) ≅ \(\overline{D C}\) is the midpoint of \(\overline{A C}\) and \(\overline{B D}\)
Prove ∆AEB ≅ ∆CED
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 15

Question 16.
PROOF
Use the information in the figure to prove that ∆ABG ≅ ∆DCF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 56
Answer:

ERROR ANALYSIS
In Exercises 17 and 18, describe and correct the error.

Question 17.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 57
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 17

Question 18.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 58
Answer:

Question 19.
PROVING A THEOREM
Prove the Third Angles Theorem (Theorem 5.4) by using the Triangle Sum Theorem (Theorem 5. 1).
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 19.1
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 19.2

Question 20.
THOUGHT PROVOKING
Draw a triangle. Copy the triangle multiple times to create a rug design made of congruent triangles. Which property guarantees that all the triangles are congruent?
Answer:

Question 21.
REASONING
∆JKL is congruent to ∆XYZ Identify all pairs of congruent corresponding parts.
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 21

Question 22.
HOW DO YOU SEE IT?
In the diagram, ABEF ≅ CDEF
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 59
a. Explain how you know that \(\overline{B E}\) ≅ \(\overline{D E}\) and ∠ABE ≅∠CDE.
Answer:

b. Explain how you know that ∠GBE ≅ ∠GDE.
Answer:

c. Explain how you know that ∠GEB ≅ ∠GED.
Answer:

d. Do you have enough information to prove that ∠BEG ≅ ∠DEG? Explain.
Answer:

MATHEMATICAL CONNECTIONS
In Exercises 23 and 24, use the given information to write and solve a system of linear equations to find the values of x and y.

Question 23.
∆LMN ≅ ∆PQR. m∠L = 40°, m∠M = 90° m∠P = (17x – y)°. m∠R (2x + 4y)°
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 23

Question 24.
∆STL ≅ ∆XYZ, m∠T = 28°, m∠U = (4x + y)°, m∠X = 130°, m∠Y = (8x – 6y)°
Answer:

Question 25.
PROOF
Prove that the criteria for congruent triangles in this lesson is equivalent to the definition of congruence in terms of rigid motions.
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 25

Maintaining Mathematical Proficiency

What can you conclude from the diagram?

Question 26.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 60
Answer:

Question 27.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 61
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 27

Question 28.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 62
Answer:

Question 29.
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 63
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.2 a 29

5.3 Proving Triangle Congruence by SAS

Exploration 1

Drawing Triangles

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 64

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 65

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 66

Work with a partner.

Use dynamic geometry software.
a. Construct circles with radii of 2 units and 3 units centered at the origin. Construct a 40° angle with its vertex at the origin. Label the vertex A.
Answer:

b. Locate the point where one ray of the angle intersects the smaller circle and label this point B. Locate the point where the other ray of the angle intersects the larger circle and label this point C. Then draw ∆ABC.
Answer:

c. Find BC, m∠B, and m∠C.
Answer:

d. Repeat parts (a)-(c) several times. redrawing the angle indifferent positions. Keep track of your results by copying and completing the table below. What can you conclude?
USING TOOLS STRATEGICALLY
To be proficient in math, you need to use technology to help visualize the results of varying assumptions, explore consequences, and compare predictions with data.
Answer:

Communicate Your Answer

Question 2.
What can you conclude about two triangles when you know that two pairs of corresponding sides and the corresponding included angles are congruent?
Answer:

Question 3.
How would you prove your conclusion in Exploration 1(d)?
Answer:

Lesson 5.3 Proving Triangle Congruence by SAS

Monitoring Progress

In the diagram, ABCD is a square with four congruent sides and four right
angles. R, S, T, and U are the midpoints of the sides of ABCD. Also, \(\overline{R T}\) ⊥ \(\overline{S U}\) and \(\overline{S V}\) ≅ \(\overline{V U}\).
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 67
Question 1.
Prove that ∆SVR ≅ ∆UVR.
Answer:

Question 2.
Prove that ∆BSR ≅ ∆DUT.
Answer:

Question 3.
You are designing the window shown in the photo. You want to make ∆DRA congruent to ∆DRG. You design the window so that \(\overline{D A}\) ≅ \(\overline{D G}\) and ∠ADR ≅ ∠GDR. Use the SAS Congruence Theorem to prove ∆DRA ≅ ∆DRG.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 68
Answer:

Exercise 5.3 Proving Triangle Congruence by SAS

vocabulary and core concept check

Question 1.
WRITING
What is an included angle?
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 1

Question 2.
COMPLETE THE SENTENCE
If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then __________ .
Answer:

Monitoring progress and Modeling with Mathematics

In Exercises 3-8, name the included an1e between the pair of sides given.

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 69

Question 3.
\(\overline{J K}\) and \(\overline{K L}\)
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 3

Question 4.
\(\overline{P K}\) and \(\overline{L K}\)
Answer:

Question 5.
\(\overline{L P}\) and \(\overline{L K}\)
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 5

Question 6.
\(\overline{J L}\) and \(\overline{J K}\)
Answer:

Question 7.
\(\overline{K L}\) and \(\overline{J L}\)
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 7

Question 8.
\(\overline{K P}\) and \(\overline{P L}\)
Answer:

In Exercises 9-14, decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Theorem (Theorem 5.5). Explain.

Question 9.
∆ABD, ∆CDB
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 70
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 9

Question 10.
∆LMN, ∆NQP
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 71
Answer:

Question 11.
∆YXZ, ∆WXZ
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 72
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 11

Question 12.
∆QRV, ∆TSU
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 73
Answer:

Question 13.
∆EFH, ∆GHF
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 74
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 13

Question 14.
∆KLM, ∆MNK
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 75
Answer:

In Exercises 15 – 18, write a proof.

Question 15.
Given \(\overline{P Q}\) bisects ∠SPT, \(\overline{S P}\) ≅ \(\overline{T P}\)
Prove ∆SPQ ≅ ∆TPQ
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 76
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 15

Question 16.
Given \(\overline{A B}\) ≅ \(\overline{C D}\), \(\overline{A B}\) || \(\overline{C D}\)
Prove ∆ABC ≅ ∆CDA
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 77
Answer:

Question 17.
Given C is the midpoint of \(\overline{A E}\) and \(\overline{B D}\)
Prove ∆ABC ≅ ∆EDC
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 78
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 17

Question 18.
Given \(\overline{P T}\) ≅ \(\overline{R T}\), \(\overline{Q T}\) ≅ \(\overline{S T}\)
Prove ∆PQT ≅ ∆RST
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 79
Answer:

In Exercises 19-22, use the given information to name two triangles that are congruent. Explain your reasoning.

Question 19.
∠SRT ≅ ∠URT, and R is the center of the circle.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 80
Answer:

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 19

Question 20.
ABCD is a square with four congruent sides and four congruent angles.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 81
Answer:

Question 21.
RSTUV is a regular pentagon.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 82
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 21

Question 22.
\(\overline{M K}\) ⊥ \(\overline{M N}\), \(\overline{K L}\) ⊥ \(\overline{N L}\), and M and L are centers of circles.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 83
Answer:

CONSTRUCTION
In Exercises 23 and 24, construct a triangle that is congruent to ∆ABC using the SAS Congruence Theorem (Theorem 5.5).

Question 23.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 84
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 23

Question 24.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 85
Answer:

Question 25.
ERROR ANALYSIS
Describe and correct the error in finding the value of x.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 86
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 25

Question 26.
HOW DO YOU SEE IT?
What additional information do you need to prove that ∆ABC ≅ ∆DBC?
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 87
Answer:

Question 27.
PROOF
The Navajo rug is made of isosceles triangles. You know ∠B ≅∠D. Use the SAS Congruence Theorem (Theorem 5.5 to show that ∆ABC ≅ ∆CDE. (See Example 3.)
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 88
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 27

Question 28.
THOUGHT PROVOKING
There are six possible subsets of three sides or angles of a triangle: SSS, SAS, SSA, AAA, ASA, and AAS. Which of these correspond to congruence theorems? For those that do not, give a counterexample.
Answer:

Question 29.
MATHEMATICAL CONNECTIONS
Prove that
∆ABC ≅ ∆DEC
Then find the values of x and y.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 89
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 29

Question 30.
MAKING AN ARGUMENT
Your friend claims it is possible to Construct a triangle congruent to ∆ABC by first constructing \(\overline{A B}\) and \(\overline{A C}\), and then copying ∠C. Is your friend correct? Explain your reasoning.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 90
Answer:

Question 31.
PROVING A THEOREM
Prove the Reflections in Intersecting Lines Theorem (Theorem 4.3).
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 31.1
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 31.2
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 31.3
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 31.4

Maintaining Mathematical Proficiency

Classify the triangle by its sides and by measuring its angles.

Question 32.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 91
Answer:

Question 33.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 92
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 33

Question 34.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 93
Answer:

Question 35.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 94
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.3 a 35

5.4 Equilateral and Isosceles Triangles

Exploration 1

Writing a Conjecture about Isosceles Triangles

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 95

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 96

Work with a partner: Use dynamic geometry software.

a. Construct a circle with a radius of 3 units centered at the origin.
Answer:

b. Construct ∆ABC so that B and C are on the circle and A is at the origin.
Answer:

c. Recall that a triangle is isosceles if it has at least two congruent sides. Explain why ∆ABC is an isosceles triangle.
Answer:

d. What do you observe about the angles of ∆ABC?
Answer:

e. Repeat parts (a)-(d) with several other isosceles triangles using circles of different radii. Keep track of your observations by copying and completing the table below. Then write a conjecture about the angle measures of an isosceles triangle.
CONSTRUCTING VIABLE ARGUMENTS
To be proficient in math, you need to make conjectures and build a logical progression of statements to explore the truth of your conjectures.
Answer:

f. Write the converse of the conjecture you wrote in part (e). Is the converse true?
Answer:

Communicate Your Answer

Question 2.
What conjectures can you make about the side lengths and angle measures of an
isosceles triangle?
Answer:

Question 3.
How would you prove your conclusion in Exploration 1 (e)? in Exploration 1(f)?
Answer:

Lesson 5.4 Equilateral and Isosceles Triangles

Monitoring Progress

Copy and complete the statement.

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 97

Question 1.
If \(\overline{H G}\) ≅ \(\overline{H K}\), then ∠ _______ ≅ ∠ _______ .
Answer:

Question 2.
If ∠KHJ ≅∠KJH, then ______ ≅ ______ .
Answer:

Question 3.
Find the length of \(\overline{S T}\) of the triangle at the left.
Answer:

Question 4.
Find the value of x and y in the diagram.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 98
Answer:

Question 5.
In Example 4, show that ∆PTS ≅ ∆QTR
Answer:

Exercise 5.4 Equilateral and Isosceles Triangles

Vocabulary and Core Concept Check

Question 1.
VOCABULARY
Describe how to identify the vertex angle of an isosceles triangle.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 1

Question 2.
WRITING
What is the relationship between the base angles of an isosceles triangle? Explain.
Answer:

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6. copy and complete the statement. State which theorem you used.

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 99

Question 3.
If \(\overline{A E}\) ≅ \(\overline{D E}\) then ∠_____ ≅ ∠_____ .
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 3

Question 4.
If \(\overline{A B}\) ≅ \(\overline{E B}\) then ∠_____ ≅ ∠_____ .
Answer:

Question 5.
If ∠D ≅ ∠CED, then _______ ≅ _______ .
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 5

Question 6.
If ∠EBC ≅ ∠ECB, then _______ ≅ _______ .
Answer:

In Exercises 7-10. find the value of x.

Question 7.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 100
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 7

Question 8.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 101
Answer:

Question 9.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 102
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 9

Question 10.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 103
Answer:

Question 11.
MODELING WITH MATHEMATICS
The dimensions of a sports pennant are given in the diagram. Find the values of x and y.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 104
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 11

Question 12.
MODELING WITH MATHEMATICS
A logo in an advertisement is an equilateral triangle with a side length of 7 centimeters. Sketch the logo and give the measure of each side.
Answer:

In Exercises 13-16, find the values of x and y.

Question 13.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 105
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 13

Question 14.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 106
Answer:

Question 15.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 107
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 15

Question 16.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 108
Answer:

CONSTRUCTION
In Exercises 17 and 18, construct an equilateral triangle whose sides are the given length.

Question 17.
3 inches
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 17

Question 18.
1.25 inches
Answer:

Question 19.
ERROR ANALYSIS
Describe and correct the error in finding the length of \(\overline{B C}\).
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 109
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 19

Question 20.
PROBLEM SOLVING
The diagram represents part of the exterior of the Bow Tower in Calgary. Alberta, Canada, In the diagram. ∆ABD and ∆CBD arc congruent equilateral triangles.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 110

a. Explain why ∆ABC is isosceles.
Answer:

b. Explain ∠BAE ≅ ∠BCE.
Answer:

c. Show that ∆ABE and ∆CBE arc congruent.
Answer:

d. Find the measure of ∠BAE.
Answer:

Question 21.
FINDING A PATTERN
In the pattern shown. each small triangle is an equilateral triangle with an area of 1 square unit.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 111
a. Explain how you know that an triangle made out of equilateral triangles is equilateral.
b. Find the areas of the first four triangles in the pattern.
c. Describe any patterns in the areas. Predict the area of the seventh triangle in the pattern. Explain your reasoning.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 21

Question 22.
REASONING
The base of isosceles ∆XYZ is \(\overline{Y Z}\). What
can you prove? Select all that apply.
(A) \(\overline{X Y}\) ≅ \(\overline{X Z}\)
(B) ∠X ≅ ∠Y
(C) ∠Y ≅ ∠Z
(D) \(\overline{Y Z}\) ≅ \(\overline{Z X}\)
Answer:

In Exercises 23 and 24, find the perimeter of the triangle.

Question 23.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 112
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 23

Question 24.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 113
Answer:

MODELING WITH MATHEMATICS
In Exercises 25 – 28. use the diagram based on the color wheel. The 12 triangles in the diagram are isosceles triangles with congruent vertex angles.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 114

Question 25.
Complementary colors lie directly opposite each other on the color wheel. Explain how you know that the yellow triangle is congruent to the purple triangle.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 25

Question 26.
The measure of the vertex angle of the yellow triangle is 30°. Find the measures of the base angles.
Answer:

Question 27.
Trace the color wheel. Then form a triangle whose vertices are the midpoints of the bases of the red. yellow. and blue triangles. (These colors are the primary colors.) What type of triangle is this?
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 27

Question 28.
Other triangles can be brined on the color wheel that are congruent to the triangle in Exercise 27. The colors on the vertices of these triangles are called triads. What are the possible triads?
Answer:

Question 29.
CRITICAL THINKING
Are isosceles triangles always acute triangles? Explain your reasoning.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 29

Question 30.
CRITICAL THINKING
Is it possible for an equilateral triangle to have an angle measure other than 60°? Explain your reasoning.
Answer:

Question 31.
MATHEMATICAL CONNECTIONS
The lengths of the sides of a triangle are 3t, 5t – 12, and t + 20. Find the values of t that make the triangle isosceles. Explain your reasoning.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 31

Question 32.
MATHEMATICAL CONNECTIONS
The measure of an exterior angle of an isosceles triangle is x°. Write expressions representing the possible angle measures of the triangle in terms of x.
Answer:

Question 33.
WRITING
Explain why the measure of the vertex angle of an isosceles triangle must be an even number of degrees when the measures of all the angles of the triangle are whole numbers.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 33

Question 34.
PROBLEM SOLVING
The triangular faces of the peaks on a roof arc congruent isosceles triangles with vertex angles U and V.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 115
a. Name two angles congruent to ∠WUX. Explain your reasoning.
b. Find the distance between points U and V.
Answer:

Question 35.
PROBLEM SOLVING
A boat is traveling parallel to the shore along \(\vec{R}\)T. When the boat is at point R, the captain measures the angle to the lighthouse as 35°. After the boat has traveled 2.1 miles, the captain measures the angle to the lighthouse to be 70°.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 116
a. Find SL. Explain your reasoning.
b. Explain how to find the distance between the boat and the shoreline.
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 35

Question 36.
THOUGHT PROVOKING
The postulates and theorems in this book represent Euclidean geometry. In spherical geometry, all points are points on the surface of a sphere. A line is a circle on the sphere whose diameter is equal to the diameter of the sphere. In spherical geometry, do all equiangular triangles have the same angle measures? Justify your answer.
Answer:

Question 37.
PROVING A COROLLARY
Prove that the Corollary to the Base Angles Theorem (Corollary 5.2) follows from the Base Angles Theorem (Theorem 5.6).
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 37

Question 38.
HOW DO YOU SEE IT?
You are designing fabric purses to sell at the school fair.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 117
a. Explain why ∆ABE ≅ ∆DCE.
b. Name the isosceles triangles in the purse.
c. Name three angles that are congruent to ∠EAD.
Answer:

Question 39.
PROVING A COROLLARY
Prove that the Corollary to the Converse of the Base Angles Theorem (Corollary 5.3) follows from the Converse of the Base Angles Theorem (Theorem 5.7)
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 39

Question 40.
MAKING AN ARGUMENT
The coordinates of two points are T(0, 6) and U(6, 0) Your friend claims that points T, U, and V will always be the vertices of an isosceles triangle when V is any point on the line y = x. Is your friend correct? Explain your reasoning.
Answer:

Question 41.
PROOF
Use the diagram to prove that ∆DEF is equilateral.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 118
Given ∆ABC is equilateral
∠CAD ≅ ∠ABE ≅ ∠BCF
Prove ∆DEF is equilateral
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 41.1
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 41.2

Maintaining Mathematical Proficiency

Use the given property to complete the statement.

Question 42.
Reflexive Property of Congruence (Theorem 2. 1): ________ ≅ \(\overline{S E}\)
Answer:

Question 43.
Symmetric Property of Congruence (Theorem 2.1): If ________ ≅ ________, then \(\overline{R S}\) ≅ \(\overline{J K}\)
Answer:
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 5.4 a 43

Question 44.
Transitive Property of Congruence (Theorem 2.1): If \(\overline{E F}\) ≅ \(\overline{P Q}\), and \(\overline{P Q}\) ≅ \(\overline{U V}\) ________ ≅ ________.
Answer:

5.1 to 5.4 Quiz

Find the measure of the exterior angle.

Question 1.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 119
Answer:

Question 2.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 120
Answer:

Question 3.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 121
Answer:

Identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons.

Question 4.
∆ABC ≅ ∆DEF
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 122
Answer:

Question 5.
QRST ≅ WXYZ
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 123
Answer:

Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Theorem (Thm 5.5). If so, write a proof. If not, explain why.

Question 6.
∆CAD, ∆CBD
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 124
Answer:

Question 7.
∆GHF, ∆KHJ
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 125
Answer:

Question 8.
∆LWP, ∆NMP
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 126
Answer:

Copy and complete the statement. State which theorem you used.

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 127

Question 9.
If VW ≅ WX, then ∠______ ≅ ∠ ________.
Answer:

Question 10.
If XZ ≅ XY. then∠______ ≅ ∠ ________.
Answer:

Question 11.
If ∠ZVX ≅∠ZXV, then ∠______ ≅ ∠ ________.
Answer:

Question 12.
If ∠XYZ ≅∠ZXY, then ∠______ ≅ ∠ ________.
Answer:

Find the values of x and y.

Question 13.
∆DEF ≅ ∆QRS
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 128
Answer:

Question 14.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 129
Answer:

Question 15.
In a right triangle, the measure of one acute angle is 4 times the difference of the measure of the other acute angle and 5. Find the measure ol each acute angle in the triangle. (Section 5.1)
Answer:

Question 16.
The figure shows a stained glass window. (Section 5.1 and Section 5.3)

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 130

a. Classify triangles 1 – 4 by their angles.
Answer:

b. Classify triangles 4 – 6 by their sides.
Answer:

c. Is there enough information given to prove that ∆7 ≅ ∆8? If so, label the vertices
and write a proof. If not, determine what additional information is needed.
Answer:

5.5 Proving Triangle Congruence by SSS

Exploration 1

Drawing Triangles

Work with a partner.
Use dynamic geometry software.

Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 131

Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 132

Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 133

a. Construct circles with radii of 2 units and 3 units centered at the origin. Label the origin A. Then draw \(\overline{B C}\) of length 4 units.
Answer:

b. Move \(\overline{B C}\) so that B is on the smaller circle and C is on the larger circle. Then draw ∆ABC.
Answer:

c. Explain why the side lengths of ∆ABC are 2, 3, and 4 units.
Answer:

d. Find m∠A, m∠B, and m∠C.
Answer:

e. Repeat parts (b)and (d) several times, moving \(\overline{B C}\) to different locations. Keep track of ‘our results by copying and completing the table below. What can you conclude?
USING TOOLS STRATEGICALLY
To be proficient in math, you need to use technology to help visualize the results of varying assumptions, explore consequences, and compare predictions with data.
Answer:

Communicate Your Answer

Question 2.
What can you conclude about two triangles when you know the corresponding sides are congruent?
Answer:

Question 3.
How would you prove your conclusion in Exploration 1(e)?
Answer:

Lesson 5.5 Proving Triangle Congruence by SSS

Monitoring Progress

Decide whether the congruence statement is true. Explain your reasoning.

Question 1.
∆DFG ≅ ∆HJK
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 134
Answer:

Question 2.
∆ACB ≅ ∆CAD
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 135
Answer:

Question 3.
∆QPT ≅ ∆RST
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 136
Answer:

Determine whether the figure is stable. Explain your reasoning.

Question 4.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 137
Answer:

Question 5.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 138
Answer:

Question 6.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 139
Answer:

Use the diagram.

Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 140

Question 7.
Redraw ∆ABC and ∆DCB side by side with corresponding parts in the same position.
Answer:

Question 8.
Use the information in the diagram to prove that ∆ABC ≅ ∆DCB.
Answer:

Exercise 5.5 Proving Triangle Congruence by SSS

Vocabulary and Core Concept Check

Question 1.
COMPLETE THE SENTENCE
The side opposite the right angle is called the __________of the right triangle.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 1

Question 2.
WHICH ONE DOESNT BELONG?
Which triangles legs do not belong with the other three? Explain your reasoning.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 142
Answer:

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, decide whether enough information is given to prove that the triangles are congruent using the SSS Congruence Theorem (Theorem 5.8). Explain.

Question 3.
∆ABC, ∆DBE
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 141
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 3

Question 4.
∆PQS, ∆RQS
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 143
Answer:

In Exercises 5 and 6, decide whether enough information is given to prove that the triangles are congruent using the HL Congruence Theorem (Theorem 5.9). Explain.

Question 5.
∆ABC, ∆FED
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 144
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 5

Question 6.
∆PQT, ∆SRT
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 145
Answer:

In Exercises 7-10. decide whether the congruence statement is true. Explain your reasoning.

Question 7.
∆RST ≅ ∆TQP
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 146
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 7

Question 8.
∆ABD ≅ ∆CDB
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 147
Answer:

Question 9.
∆DEF ≅ ∆DGF
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 148
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 9

Question 10.
∆JKL ≅ ∆LJM
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 149
Answer:

In Exercises 11 and 12, determine whether the figure is stable. Explain your reasoning.

Question 11.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 150
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 11

Question 12.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 151
Answer:

In Exercises 13 and 14, redraw the triangles so they are side by side with corresponding parts in the same position. Then write a proof.

Question 13.
Given \(\overline{A C}\) ≅ \(\overline{B D}\)
\(\overline{A B}\) ⊥ \(\overline{A D}\)
\(\overline{C D}\) ⊥ \(\overline{A D}\)
Prove ∆BAD ≅ ∆CDA
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 152
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 13

Question 14.
Given G is the midpoint of \(\overline{E H}\), \(\overline{F G}\) ≅ \(\overline{G I}\), ∠E and ∠H are right angles.
Prove ∆EFG ≅ ∆HIG
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 153
Answer:

In Exercises 15 and 16. write a proof.

Question 15.
Given \(\overline{L M}\) ≅ \(\overline{J K}\), \(\overline{M J}\) ≅ \(\overline{K L}\)
Prove ∆LMJ ≅ ∆JKL
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 154
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 15

Question 16.
Given \(\overline{W X}\) ≅ \(\overline{V Z}\), \(\overline{W Y}\) ≅ \(\overline{V Y}\), \(\overline{Y Z}\) ≅ \(\overline{Y X}\)
Prove ∆VWX ≅ ∆WVZ
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 155
Answer:

CONSTRUCTION
In Exercises 17 and 18, construct a triangle that is congruent to ∆QRS using the SSS Congruence Theorem Theorem 5.8).

Question 17.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 156
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 17

Question 18.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 157
Answer:

Question 19.
ERROR ANALYSIS
Describe and correct the error in identifying congruent triangles.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 158
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 19

Question 20.
ERROR ANALYSIS
Describe and correct the error in determining the value of x that makes the triangles congruent.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 159
Answer:

Question 21.
MAKING AN ARGUMENT
Your friend claims that in order to use the SSS Congruence Theorem (Theorem 5.8) Lo prove that two triangles are congruent, both triangles must be equilateral triangles. Is your friend correct? Explain your reasoning.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 21

Question 22.
MODELING WITH MATHEMATICS
The distances between consecutive bases on a softball field are the same. The distance from home plate to second base is the same as the distance from first base to third base. The angles created at each base are 90°. Prove
∆HFS ≅ ∆FST ≅ ∆STH
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 160
Answer:

Question 23.
REASONING
To support a tree you attach wires from the trunk of the tree to stakes in the ground, as shown in the diagram.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 161
a. What additional information do you need to use the HL Congruence Theorem (Theorem 5.9) to prove that ∆JKL ≅ ∆MKL?
b. Suppose K is the midpoint of JM. Name a theorem you could use to prove that ∆JKL ≅ ∆MKL. Explain your reasoning.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 23

Question 24.
REASONING
Use the photo of the Navajo rug, where \(\overline{B C}\) ≅ \(\overline{D E}\) and \(\overline{A C}\) ≅ \(\overline{C E}\)
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 162
a. What additional intormation do you need to use the SSS Congruence Theorem (Theorem 5.8) to prove that ∆ABC ≅ ∆CDE?
b. What additional information do you need to use the HL Congruence Theorem (Theorem 5.9) to prove that ∆ABC ≅ ∆CDE?
Answer:

In Exercises 25-28. use the given coordinates to determine whether ∆ABC ≅ ∆DEF.

Question 25.
A(- 2, – 2), B(4, – 2), C(4, 6), D(5, 7), E(5, 1), F(13, 1)
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 25

Question 26.
A(- 2, 1), B(3, – 3), C(7, 5), D(3, 6), E(S, 2), F( 10, 11)
Answer:

Question 27.
A(0, 0), B(6, 5), C(9, 0), D(0, – 1), E(6, – 6), F(9, – 1)
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 27

Question 28.
A(- 5, 7), B(- 5, 2), C(0, 2), D(0, 6), E(o, 1), F(4, 1)
Answer:

Question 29.
CRITICAL THINKING
You notice two triangles in the tile floor of a hotel lobby. You want to determine whether the triangles are congruent. but you only have a piece of string. Can you determine whether the triangles are congruent? Explain.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 29

Question 30.
HOW DO YOU SEE IT?
There are several theorems you can use to show that the triangles in the “square” pattern are congruent. Name two of them.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 163
Answer:

Question 31.
MAKING AN ARGUMENT
Your cousin says that ∆JKL is congruent to ∆LMJ by the SSS Congruence Theorem (Thm. 5.8). Your friend says that ∆JKL is congruent to ∆LMJ by the HL Congruence Theorem (Thm. 5.9). Who is correct? Explain your reasoning.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 164
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 31

Question 32.
THOUGHT PROVOKING
The postulates and theorems in this book represent Euclidean geometry. In spherical geometry. all points are points on the surface of a sphere. A line is a circle on the sphere whose diameter is equal to the diameter of the sphere. In spherical geometry. do you think that two triangles are congruent if their corresponding sides are congruent? Justify your answer.
Answer:

USING TOOLS
In Exercises 33 and 34, use the given information to sketch ∆LMN and ∆STU. Mark the triangles with the given information.

Question 33.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 165
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 33

Question 34.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 166
Answer:

Question 35.
CRITICAL THINKING
The diagram shows the light created by two spotlights, Both spotlights are the same distance from the stage.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 167
Answer:
a. Show that ∆ABD ≅ ∆CBD. State which theorem or postulate you used and explain your reasoning.
b. Are all four right triangles shown in the diagram Congruent? Explain your reasoning.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 35

Question 36.
MATHEMATICAL CONNECTIONS
Find all values of x that make the triangles congruent. Explain.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 168
Answer:

Maintaining Mathematical proficiency

Use the congruent triangles.

Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 169

Question 37.
Name the Segment in ∆DEF that is congruent to \(\overline{A C}\).
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 37

Question 38.
Name the segment in ∆ABC that is congruent to \(\overline{E F}\).
Answer:

Question 39.
Name the angle in ∆DEF that is congruent to ∠B.
Answer:
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 5.5 a 39

Question 40.
Name the angle in ∆ABC that is congruent to ∠F.
Answer:

5.6 Proving Triangle Congruence by ASA and AAS

Exploration 1

Determining Whether SSA Is Sufficient

Work with a partner.
a. Use dynamic geometry software to construct ∆ABC. Construct the triangle so that vertex B is at the origin. \(\overline{A B}\) has a length of 3 units. and \(\overline{B C}\) has a length of 2 units.
Answer:

b. Construct a circle with a radius of 2 units centered at the origin. Locate point D where the circle intersects \(\overline{A C}\). Draw \(\overline{B D}\).
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 170
Answer:

c. ∆ABC and ∆ABD have two congruent sides and a non included congruent angle.
Name them.
Answer:

d. Is ∆ABC ≅ ∆ABD? Explain your reasoning.
Answer:

e. Is SSA sufficient to determine whether two triangles are congruent? Explain your reasoning.
Answer:

Exploration 2

Determining Valid Congruence Theorems

Work with a partner. Use dynamic geometry software to determine which of the following are valid triangle congruence theorems. For those that are not valid. write a counter example. Explain your reasoning.
CONSTRUCTING VIABLE ARGUMENTS
To be proficient in math, you need to recognize and use counterexamples.

Possible Congruence TheoremValid or not valid?
SSS
SSA
SAS
AAS
ASA
AAA

Answer:

Communicate Your Answer

Question 3.
What information is sufficient to determine whether two triangles are congruent?
Answer:

Question 4.
Is it possible to show that two triangles are congruent using more than one congruence theorem? If so, give an example.
Answer:

Lesson 5.6 Proving Triangle Congruence by ASA and AAS

Monitoring Progress

Question 1.
Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 171
Answer:

Question 2.
In the diagram, \(\overline{A B}\) ⊥ \(\overline{A D}\), \(\overline{D E}\) ⊥ \(\overline{A D}\), and \(\overline{A C}\) ≅ \(\overline{D C}\) . Prove ∆ABC ≅ ∆DEF.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 172
Answer:

Question 3.
In the diagram, ∠S ≅ ∠U and \(\overline{B D}\)\(\overline{B D}\) . Prove that ∆RST ≅ ∆VYT
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 173
Answer:

Lesson 5.6 Proving Triangle Congruence by ASA and AAS

Vocabulary and Core Concept Check

Question 1.
WRITING
How arc the AAS Congruence Theorem (Theorem 5. 11) and the ASA Congruence
Theorem (Theorem 5.10) similar? How are they different?
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 1

Question 2.
WRITING
You know that a pair of triangles has two pairs of congruent corresponding angles. What other information do you need to show that the triangles are congruent?
Answer:

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, decide whether enough information is given to prove that the triangles are congruent. If so, state the theorem you would use.

Question 3.
∆ABC, ∆QRS
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 174
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 3

Question 4.
∆ABC, ∆DBC
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 175
Answer:

Question 5.
∆XYZ, ∆JKL
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 176
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 5

Question 6.
∆RSV, ∆UTV
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 177
Answer:

In Exercises 7 and 8, state the third congruence statement that is needed to prove that ∆FGH ≅ ∆LMN the given theorem.

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 178
Question 7.
Given \(\overline{G H}\) ≅ \(\overline{M N}\), ∠G ≅ ∠M, _______ = ________
Use the AAS Congruence Theorem (Thm. 5.11).
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 7

Question 8.
Given \(\overline{F G}\) ≅ \(\overline{L M}\), ∠G ≅ ∠M, _______ = ________
Use the ASA Congruence Theorem (Thm. 5.10).
Answer:

In Exercises 9 – 12. decide whether you can use the given information to prove that ∆ABC ≅ ∆DEF Explain your reasoning.

Question 9.
∠A ≅ ∠G, ∠C ≅∠F, \(\overline{A C}\) ≅ \(\overline{D F}\)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 9

Question 10.
∠C ≅ ∠F, \(\overline{A B}\) ≅ \(\overline{D E}\), \(\overline{B C}\) ≅ \(\overline{E F}\)
Answer:

Question 11.
∠B ≅ ∠E, ∠C ≅∠F, \(\overline{A C}\) ≅ \(\overline{D E}\)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 11

Question 12.
∠A ≅ ∠D, ∠B ≅∠E, \(\overline{B C}\) ≅ \(\overline{E F}\)
Answer:

CONSTRUCTION
In Exercises 13 and 14, construct a triangle that is congruent to the given triangle using the ASA Congruence Theorem (Theorem 5.10). Use a compass and straightedge.

Question 13.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 179
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 13

Question 14.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 180
Answer:

ERROR ANALYSIS
In Exercises 15 and 16, describe and correct the error.

Question 15.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 181
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 15

Question 16.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 182
Answer:

PROOF
In Exercises 17 and 18, prove that the triangles are congruent using the ASA Congruence Theorem (Theorem 5.10).

Question 17.
Given M is the midpoint of \(\overline{N L}\).
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 183
Prove ∆NQM ≅ ∆MPL
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 184
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 17.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 17.2

Question 18.
Given \(\overline{A J}\) ≅ \(\overline{K C}\) ∠BJK ≅ ∠BKJ, ∠A ≅ ∠C
Prove ∆ABK ≅ ∆CBJ
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 185
Answer:

PROOF
In Exercises 19 and 20, prove that the triangles are congruent using the AAS Congruence Theorem (Theorem 5.11).

Question 19.
Given \(\overline{V W}\) ≅ \(\overline{U W}\), ∠X ≅ ∠Z
Prove ∆XWV ≅ ∆ZWU
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 186
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 19

Question 20.
Given ∠NKM ≅∠LMK, ∠L ≅∠N
Prove ∆NMK ≅ ∆LKM
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 187
Answer:

PROOF
In Exercises 21-23, write a paragraph proof for the theorem about right triangles.

Question 21.
Hypotenuse-Angle (HA) Congruence Theorem
If an angle and the hypotenuse of a right triangle are congruent to an angle and the hypotenuse of a second right triangle, then the triangles are congruent.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 21

Question 22.
Leg-Leg (LL) Congruence Theorem
If the legs of a right triangle are congruent to the legs of a second right triangle, then the triangles are congruent.
Answer:

Question 23.
Angle-Leg (AL) Congruence Theorem
If an angle and a leg of a right triangle are congruent to an angle and a leg of a second right triangle, then the triangles are Congruent.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 23

Question 24.
REASONING
What additional in information do you need to prove ∆JKL ≅ ∆MNL by the ASA Congruence Theorem (Theorem 5. 10)?
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 188
(A) \(\overline{K M}\) ≅ \(\overline{K J}\)
(B) \(\overline{K H}\) ≅ \(\overline{N H}\)
(C) ∠M ≅ ∠J
(D) ∠LKJ ≅ ∠LNM
Answer:

Question 25.
MATHEMATICAL CONNECTIONS
This toy contains △ABC and △DBC. Can you conclude that △ABC ≅ △DBC from the given angle measures? Explain
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 189
m∠ABC = (8x – 32)°
m∠DBC = (4y – 24)°
m∠BCA = (5x + 10)°
m∠BCD = (3y + 2)°
m∠CAB = (2x – 8)°
m∠CDB = (y – 6)°
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 25.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 25.2

Question 26.
REASONING
Which of the following congruence statements are true? Select all that apply.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 190
(A) \(\overline{B D}\) ≅ \(\overline{B D}\)
(B) ∆STV ≅ ∆XVW
(C) ∆TVS ≅ ∆VWU
(D) ∆VST ≅ ∆VUW
Answer:

Question 27.
PROVING A THEOREM
Prove the Converse of the Base Angles Theorem (Theorem 5.7). (Hint: Draw an auxiliary line inside the triangle.)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 27.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 27.2

Question 28.
MAKING AN ARGUMENT
Your friend claims to be able Lo rewrite any proof that uses the AAS Congruence Theorem (Thin. 5. 11) as a proof that uses the ASA Congruence Theorem (Thin. 5.10). Is this possible? Explain our reasoning.
Answer:

Question 29.
MODELING WITH MATHEMATICS
When a light ray from an object meets a mirror, it is reflected back to your eye. For example, in the diagram, a light ray from point C is reflected at point D and travels back to point A. The law of reflection states that the angle of incidence, ∠CDB. is congruent to the angle of reflection. ∠ADB.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 191
a. Prove that ∆ABD is Congruent to ∆CBD.
Given ∠CBD ≅∠ABD
DB ⊥ AC
Prove ∆ABD ≅ ∆CBD
b. Verify that ∆ACD is isosceles.
c. Does moving away from the mirror have an effect on the amount of his or her reflection a person sees? Explain.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 29.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 29.2

Question 30.
HOW DO YOU SEE IT?
Name as man pairs of congruent triangles as you can from the diagram. Explain how you know that each pair of triangles is congruent.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 192
Answer:

Question 31.
CONSTRUCTION
Construct a triangle. Show that there is no AAA congruence rule by constructing a second triangle that has the same angle measures but is not congruent.
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 31

Question 32.
THOUGHT PROVOKING
Graph theory is a branch of mathematics that studies vertices and the way they are connected. In graph theory. two polygons are isomorphic if there is a one-to-one mapping from one polygon’s vertices to the other polygon’s vertices that preserves adjacent vertices. In graph theory, are any two triangles isomorphic? Explain your reasoning. second triangle that has the same angle measures but is not congruent.
Answer:

Question 33.
Mathematical Connections
Six statements are given about ∆TUV and ∆XYZ
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 193
a. List all combinations of three given statements that could provide enough information to prove that ∆TUV is congruent to ∆XYZ.
b. You choose three statements at random. What is the probability that the statements you choose provide enough information to prove that the triangles are congruent?
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 33.1
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 33.2

Maintaining Mathematical proficiency

Find the coordinates of the midpoint of the line segment with the given endpoints.

Question 34.
C(1, 0) and D(5, 4)
Answer:

Question 35.
J(- 2, 3) and K(4, – 1)
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 35

Question 36.
R(- 5, – 7) and S(2, – 4)
Answer:

Copy and angle using a compass and straightedge.

Question 37.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 194
Answer:
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 5.6 a 37

Question 38.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 195
Answer:

5.7 Using Congruent Triangles

Exploration 1

Measuring the Width of a River

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 219

Work with a partner:
The figure shows how a surveyor can measure the width of a river by making measurements on only one side of the river.

a. Study the figure. Then explain how the surveyor can find the width of the river.
Answer:

b. Write a proof to verify that the method you described in part (a) is valid.
Given ∠A is a right angle, ∠D is a right angle, \(\overline{A C}\) ≅ \(\overline{C D}\)
Answer:

c. Exchange Proofs with your partner and discuss the reasoning used.
CRITIQUING THE REASONING OF OTHERS
To be proficient in math, you need to listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
Answer:

Exploration 2

Measuring the Width of a River

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 196

Work with a partner. It was reported that one of Napoleon’s offers estimated the width of a river as follows. The officer stood on the hank of the river and lowered the visor on his cap until the farthest thin visible was the edge of the bank on the other side. He then turned and rioted the point on his side that was in line with the tip of his visor and his eye. The officer then paced the distance to this point and concluded that distance was the width of the river.

a. Study the figure. Then explain how the officer concluded that the width of the river is EG.
Answer:

b. Write a proof to verify that the conclusion the officer made is correct.
Given ∠DEG is a right angle, ∠DEF is a right angle, ∠EDG ≅ ∠EDF
Answer:

c. Exchange proofs with your partner and discuss the reasoning used.
Answer:

Communicate Your Answer

Question 3.
How can you use congruent triangles to make an indirect measurement?
Answer:

Question 4.
Why do you think the types of measurements described in Explorations 1 and 2 are called indirect measurements?
Answer:

Lesson 5.7 Using Congruent Triangles

Monitoring Progress

Question 1.
Explain how you can prove that ∠A ≅ ∠C.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 197
Answer:

Question 2.
In Example 2, does it mailer how far from point N you place a stake at point K? Explain.
Answer:

Question 3.
Write a plan to prove that ∆PTU ≅ ∆UQP.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 198
Answer:

Question 4.
Use the construction of an angle bisector on page 42. What segments can you assume are congruent?
Answer:

Exercise 5.7 Using Congruent Triangles

Vocabulary and core concept check

Question 1.
COMPLETE THE SENTENCE
_____________ parts of congruent triangle are congruent.
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 1

Question 2.
WRITING
Describe a situation in which you might choose to use indirect measurement with
congruent triangles to find a measure rather than measuring directly.
Answer:

Monitoring Progress and Modeling With Mathematics

In Exercise 3-8, explain how to prove that the statement is true.

Question 3.
∠A ≅ ∠D
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 199
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 3

Question 4.
∠Q ≅∠T
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 200
Answer:

Question 5.
\(\overline{J M}\) ≅ \(\overline{L M}\)
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 201
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 5

Question 6.
\(\overline{A C}\) ≅ \(\overline{D B}\)
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 202
Answer:

Question 7.
\(\overline{G K}\) ≅ \(\overline{H J}\)
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 203
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 7

Question 8.
\(\overline{Q W}\) ≅ \(\overline{V T}\)
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 204
Answer:

In Exercises 9-12, write a plan to prove that ∠1 ≅∠2.

Question 9.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 205
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 9

Question 10.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 206
Answer:

Question 11.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 207
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 11

Question 12.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 208
Answer:

In Exercises 13 and 14. write a proof to verify that the construction is valid.

Question 13.
Line perpendicular to a line through a point not on the line
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 209
Plan for proof ∆APQ ≅ ∆BPQ by the congruence Theorem (Theorem 5.8). Then show the ∆APM ≅ ∆BPM using the SAS Congruence Theorem (Theorem 5.5). Use corresponding parts of congruent triangles to show that ∠AMP and ∠BMP are right angles.
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 13.1
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 13.2

Question 14.
Line perpendicular to a line through a p0int on the line
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 210
Plan for Proof Show that ∆APQ ≅ ∆BPQ by the SSS Congruence Theorem (Theorem 5.8) Use corresponding parts of congruent triangles to show that ∠QPA and ∠QPB are right angles.
Answer:

In Exercises 15 and 16, use the information given in the diagram to write a proof.

Question 15.
Prove \(\overline{F L}\) ≅ \(\overline{H N}\)
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 211
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 15.1
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 15.2

Question 16.
Prove ∆PUX ≅ ∆QSY
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 212
Answer:

Question 17.
MODELING WITH MATHEMATICS
Explain how to find the distance across the canyon.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 213
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 17

Question 18.
HOW DO YOU SEE IT?
Use the tangram puzzle.
Answer:

Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 214

a. Which triangle(s) have an area that is twice the area of the purple triangle?
b. How man times greater is the area of the orange triangle than the area of the purple triangle?
Answer:

Question 19.
PROOF
Prove that the green triangles in the Jamaican flag congruent if \(\overline{A D}\) || \(\overline{B C}\) and E is the midpoint of \(\overline{A C}\).
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 215
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 19.1
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 19.2

Question 20.
THOUGHT PROVOKING
The Bermuda Triangle is a region in the Atlantic Ocean in which many ships and planes have mysteriously disappeared. The vertices are Miami. San Juan. and Bermuda. Use the Internet or some other resource to find the side lengths. the perimeter, and the area of this triangle (in miles). Then create a congruent triangle on land using cities as vertices.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 216
Answer:

Question 21.
MAKING AN ARGUMENT
Your friend claims that ∆WZY can be proven congruent to ∆YXW using the HL Congruence Theorem (Thm. 5.9). Is your friend correct? Explain your reasoning.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 217
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 21

Question 22.
CRITICAL THINKING
Determine whether each conditional statement is true or false. If the statement is false, rewrite it as a true statement using the converse, inverse, or contrapositive.
a. If two triangles have the same perimeter, then they are congruent.
b. If two triangles are congruent. then they have the same area.
Answer:

Question 23.
ATTENDING TO PRECISION
Which triangles are congruent to ∆ABC? Select all that apply.
Big Ideas Math Geometry Answers Chapter 5 Congruent Triangles 218
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 23

Maintaining Mathematical Proficiency

Find the perimeter of the polygon with the given vertices.

Question 24.
A(- 1, 1), B(4, 1), C(4, – 2), D(- 1, – 2)
Answer:

Question 25.
J(- 5, 3), K(- 2, 1), L(3, 4)
Answer:
Big Ideas Math Answers Geometry Chapter 5 Congruent Triangles 5.7 a 25

5.8 Coordinate Proofs

Exploration 1

Writing a coordinate Proof

Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 218

Work with a partner.

a. Use dynamic geometry software to draw \(\overline{A B}\) with endpoints A(0, 0) and B(6, 0).
Answer:

b. Draw the vertical line x = 3.
Answer:

c. Draw ∆ABC so that C lies on the line x = 3.
Answer:

d. Use your drawing to prove that ∆ABC is an isosceles triangle.
Answer:

Exploration 2

Writing a Coordinate proof

Work with a partner.

a. Use dynamic geometry software to draw \(\overline{A B}\) with endpoints A(0, 0) and B(6, 0).

b. Draw the vertical line x = 3.

c. Plot the point C(3, 3) and draw ∆ABC. Then use your drawing to prove that ∆ABC is an isosceles right triangle.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 219

d. Change the coordinates of C so that C lies below the x-axis and ∆ABC is an isosceles right triangle.
Answer:

e. Write a coordinate proof to show that if C lies on the line x = 3 and ∆ABC is an isosceles right triangle. then C must be the point (3, 3) or the point found in part (d).
CRITIQUING THE REASONING OF OTHERS
To be proficient in math, you need to understand and use stated assumptions, definitions, and previously established results.
Answer:

Communicate Your Answer

Question 3.
How can you use a coordinate plane to write a proof?
Answer:

Question 4.
Write a coordinate proof to prove that ∆ABC with vertices A(0, 0), 8(6, 0), and C(3, 3√3) is an equilateral triangle.
Answer:

Lesson 5.8 Coordinate Proofs

Monitoring Progress

Question 1.
Show another way to place the rectangle in Example 1 part (a) that is convenient
for finding side lengths. Assign new coordinates.
Answer:

Question 2.
A square has vertices (0, 0), (m, 0), and (0, m), Find the fourth vertex.
Answer:

Question 3.
Write a plan for the proof.
Given \(\vec{G}\)J bisects ∠OGH.
Proof ∆GJO ≅ ∆GJH
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 220
Answer:

Question 4.
Graph the points 0(0, 0), H(m, n), and J(m, 0). Is ∆OHJ a right triangle? Find the side lengths and the coordinates of the midpoint of each side.
Answer:

Question 5.
Write a coordinate proof.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 221
Given Coordinates of vertices of ∆NPO and ∆NMO
Prove ∆NPO ≅ ∆NMO
Answer:

Exercise 5.8 Coordinate Proofs

Vocabulary and Core Concept Check

Question 1.
VOCABULARY
How is a coordinate proof different from other types of proofs you have studied?
How is it the same?
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 1

Question 2.
WRITING
Explain why it is convenient to place a right triangle on the grid as shown when writing a coordinate proof.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 222
Answer:

Maintaining Progress and Modeling with Mathematics

In Exercises 3-6, place (he figure in a coordinate plane in a convenient way. Assign coordinates to each vertex. Explain the advantages of your placement.

Question 3.
a right triangle with leg lengths of 3 units and 2 units
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 3

Question 4.
a square with a side length of 3 units
Answer:

Question 5.
an isosceles right triangle with leg length p
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 5

Question 6.
a scalene triangle with one side length of 2m
Answer:

In Exercises 7 and 8, write a plan for the proof.

Question 7.
Given Coordinates of vertices of ∆OPM and ∆ONM Prove ∆OPM and ∆ONM are isosceles triangles.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 223
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 7

Question 8.
Given G is the midpoint of \(\overline{H F}\).
Prove ∆GHJ ≅ ∆GFO
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 224
Answer:

In Exercises 9-12, place the figure in a coordinate plane and find the indicated length.

Question 9.
a right triangle with leg lengths of 7 and 9 units; Find the length of the hypotenuse.
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 9

Question 10.
an isosceles triangle with a base length of 60 units and a height of 50 units: Find the length of one of the legs.
Answer:

Question 11.
a rectangle with a length o! 5 units and a width of 4 units: Find the length of the diagonal.
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 11

Question 12.
a square with side length n: Find the length of the diagonal.
Answer:

In Exercises 13 and 14, graph the triangle with the given vertices. Find the length and the slope of each side of the triangle. Then find the coordinates of the midpoint of each side. Is the triangle a right triangle? isosceles? Explain. Assume all variables are positive and in m ≠ n.)

Question 13.
A(0, 0), B(h, h), C(2h, 0)
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 13.1
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 13.2

Question 14.
D(0, n), E(m, n), F(m, 0)
Answer:

In Exercises 15 and 16, find the coordinates of any unlabeled vertices. Then find the indicated length(s).

Question 15.
Find ON and MN.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 225
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 15

Question 16.
Find OT.
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 226
Answer:

PROOF
In Exercises 17 and 18, rite a coordinate proof.

Question 17.
Given Coordinates of vertices of ∆DEC and ∆BOC
Prove ∆DEC ≅ ∆BOC
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 227
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 17

Question 18.
Given Coordinates of ∆DEA, H is the midpoint of \(\overline{D A}\), G is the mid point of \(\overline{E A}\)
Prove \(\overline{D G}\) ≅ \(\overline{E H}\)
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 228
Answer:

Question 19.
MODELING WITH MATHEMATICS
You and your cousin are camping in the woods. You hike to a point that is 500 meters cast and 1200 meters north of the Campsite. Your cousin hikes to a point that is 1000 meters cast of the campsite. Use a coordinate proof to prove that the triangle formed by your Position, your Cousin’s position. and the campsite is isosceles. (See Example 5.)
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 229
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 19.1
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 19.2

Question 20.
MAKING AN ARGUMENT
Two friends see a drawing of quadrilateral PQRS with vertices P(0, 2), Q(3, – 4), R(1, – 5), and S(- 2, 1). One friend says the quadrilateral is a parallelogram but not a rectangle. The other friend says the quadrilateral is a rectangle. Which friend is correct? Use a coordinate proof to support your answer.
Answer:

Question 21.
MATHEMATICAL CONNECTIONS
Write an algebraic expression for the coordinates of each endpoint of a line segment whose midpoint is the origin.
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 21

Question 22.
REASONING
The vertices of a parallelogram are (w, 0), (o, v), (- w, 0), and (0, – v). What is the midpoint of the side in Quadrant III?
(a) \(\left(\frac{w}{2}, \frac{v}{2}\right)\)
(b) \(\left(-\frac{w}{2},-\frac{v}{2}\right)\)
(c) \(\left(-\frac{w}{2}, \frac{v}{2}\right)\)
(d) \(\left(\frac{w}{2},-\frac{v}{2}\right)\)
Answer:

Question 23.
REASONING
A rectangle with a length of 3h and a width of k has a vertex at (- h, k), Which point cannot be a vertex of the rectangle?
(A) (h, k)
(B) (- h, 0)
(c) (2h, 0)
(D) (2h, k)
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 23

Question 24.
THOUGHT PROVOKING
Choose one of the theorems you have encountered up to this point that you think would be easier to prove with a coordinate proof than with another type of proof. Explain your reasoning. Then write a coordinate proof.
Answer:

Question 25.
CRITICAL THINKING
The coordinates of a triangle are (5d – 5d), (0, – 5d), and (5d, 0). How sh
would the coordinates be changed to make a coordinate proof easier to complete?
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 25

Question 26.
HOW DO YOU SEE IT?
without performing any calculations, how do you know that the diagonals of square TUVW are perpendicular to each oilier? How can you use a similar diagram to show that the diagonals of any square are perpendicular to each other?
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 230
Answer:

Question 27.
PROOF
Write a coordinate proof for each statement.
a. The midpoint o! the hypotenuse of a right triangle is the same distance from each vertex of the triangle.
b. Any two congruent right isosceles triangles can be combined to form a single isosceles triangle.
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 27.1
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 27.2

Maintaining Mathematical proficiency

\(\vec{Y}\)W bisects ∠XYZ such that m∠XYW = (3x – 7)° and m∠WYZ = (2x + 1)°.

Question 28.
Find the value of x.
Answer:

Question 29.
Find m∠XYZ
Answer:
Big Ideas Math Geometry Answer Key Chapter 5 Congruent Triangles 5.8 a 29

Congruent Triangles Chapter Review

5.1 Angles of Triangles

Question 1.
Classify the triangle at the right by its sides and by measuring its angles.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 231
Answer:

Find the measure of the exterior angle.

Question 2.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 232
Answer:

Question 3.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 234
Answer:

Find the measure of each acute angle.

Question 4.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 235
Answer:

Question 5.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 236
Answer:

5.2 Congruent Polygons

Question 6.
In the diagram. GHJK ≅ LMNP. Identify all pairs of congruent corresponding parts. Then write another congruence statement for the quadrilaterals.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 237
Answer:

Question 7.
Find m ∠ V.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 238
Answer:

5.3 Proving Triangle Congruence by SAS

Decide whether enough information is given to prove that ∆WXZ ≅ ∆YZX using the SAS Congruence Theorem (Theorem 5.5). If so, write a proof. If not, explain why.

Question 8.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 239
Answer:

Question 9.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 240
Answer:

5.4 Equilateral and Isosceles Triangles

Copy and Complete the statement.

Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 241

Question 10.
If \(\overline{Q P}\) ≅ \(\overline{Q R}\), then ∠ ______ ≅ ∠ ______ .
Answer:

Question 11.
If ∠TRV ≅ ∠TVR, then ______ ≅ ______ .
Answer:

Question 12.
If \(\overline{R Q} \cong \overline{R S}\), then ∠ ______ ≅ ∠ ______ .
Answer:

Question 13.
If ∠SRV ≅ ∠SVR, then ______ ≅ ______ .
Answer:

Question 14.
Find the values of x and y in the diagram.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 242
Answer:

5.5 Proving Triangle Congruence by SSS

Question 15.
Decide whether enough information is given to prose that ∆LMP ≅ ∆NPM using the SSS Congruence Theorem (Thin. 5.8). If so, write a proof. If not, explain why.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 243
Answer:

Question 16.
Decide whether enough information is given to prove that ∆WXZ ≅ ∆YZX using the HL Congruence Theorem (Thm. 5.9). If so, write a proof. If not, explain why.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 244
Answer:

5.6 Proving Triangle Congruence by ASA and AAS

Question 17.
∆EFG, ∆HJK
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 245
Answer:

Question 18.
∆TUS, ∆QRS
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 246
Answer:

Decide whether enough information is given to prove that the triangles are congruent using the ASA Congruence Theorem (Thm. 5.10). If so, write a proof, If not, explain why.

Question 19.
∆LPN, ∆LMN
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 247
Answer:

Question 20.
∆WXZ, ∆YZX
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 248
Answer:

5.7 Using Congruent Triangles

Question 21.
Explain how to prove that ∠K ≅∠N.

Answer:

Question 22.
Write a plan to prkove that ∠1 ≅ ∠2

Answer:

5.8 Coordinate Proofs

Question 23.
Write a coordinate proof.
Given Coordinates of vertices of quadrilateral OPQR
Prove ∆OPQ ≅ ∆QRO
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 251
Answer:

Question 24.
Place an isosceles triangle in a coordinate plane in a way that is convenient for finding side lengths. Assign coordinates to each vertex.
Answer:

Question 25.
A rectangle has vertices (0, 0), (2k, 0), and (0, k), Find the fourth vertex.
Answer:

Congruent Triangles Test

Write a Proof.

Question 1.
Given \(\overline{C A} \cong \overline{C B} \cong \overline{C D} \cong \overline{C E}\)
Prove ∆ABC ≅ ∆EDC
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 252
Answer:

Question 2.
Given \(\overline{J K}\|\overline{M L}, \overline{M J}\| \overline{K L}\)
Prove ∆MJK ≅ ∆KLM
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 253
Answer:

Question 3.
Gven \overline{Q R} \cong \overrightarrow{R S}\(\), ∠P ≅ ∠T
Prove ∆SRP ≅ ∆QRT
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 254
Answer:

Question 4.
Find the measure of each acute angle in the figure at the right.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 255
Answer:

Question 5.
Is it possible to draw an equilateral triangle that is not equiangular? If so, provide an example. If not, explain why.
Answer:

Question 6.
Can you use the Third Angles Theorem (Theorem 5.4) to prove that two triangles are congruent? Explain your reasoning.
Answer:

Write a plan through that ∠1 ≅∠2

Question 7.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 256
Answer:

Question 8.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 257
Answer:

Question 9.
Is there more than one theorem that could be used to prove that ∆ABD ≅ ∆CDB? If so, list all possible theorems.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 258
Answer:

Question 10.
Write a coordinate proof t0 show that the triangles created b the keyboard stand are congruent.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 259
Answer:

Question 11.
The picture shows the Pyramid of Cestius. which is located in Rome, Italy. The measure of the base for the triangle shown is 100 Roman feet. The measures of the other two sides of the triangle are both 144 Roman feet.
Big Ideas Math Geometry Solutions Chapter 5 Congruent Triangles 260
a. Classify the triangle shown by its sides.
Answer:

b. The measure of ∠3 is 40° What are the measures of ∠1 and ∠2? Explain your reasoning.
Answer:

Congruent Triangles Cumulative Assessment

Question 1.
Your friend claims that the Exterior Angle Theorem (Theorem 5.2) can be used to prove the Triangle Sum Theorem (Theorem 5, 1). Is your friend correct? Explain your reasoning.
Answer:

Question 2.
Use the steps in the construction to explain how you know that the line through point P is parallel to line m.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 261
Answer:

Question 3.
The coordinate plane shows ∆JKL and ∆XYZ
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 262
a. Write a composition of transformations that maps ∆JKL to ∆XYZ
Answer:

b. Is the composition a congruence transformation? If so, identify all congruent corresponding parts.
Answer:

Question 4.
The directed line segment RS is shown. Point Q is located along \(\overline{R S}\) so that the ratio of RQ to QS is 2 to 3. What are the coordinates of point Q?
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 263
(A) Q(1, 2, 3)
(B) Q(4, 2)
(C) Q(2, 3)
(D) Q(-6, 7)
Answer:

Question 5.
The coordinate plane shows that ∆ABC and ∆DEF
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 264
a. Prove ∆ABC ≅ ∆DEF using the given information.
Answer:

b. Describe the composition of rigid motions that maps ∆ABC to ∆DEF
Answer:

Question 6.
The vertices of a quadrilateral are W(0, 0), X(- 1, 3), )(2, 7), and Z(4, 2). Your friend claims that point W will not change after dilatinig quadrilateral WXYZ by a scale factor of 2. Is your friend correct? Explain your reasoning.
Answer:

Question 7.
Which figure(s) have rotational symmetry? Select all that apply.
(A) Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 265
(B) Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 266
(C) Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 267
(D) Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 268
Answer:

Question 8.
Write a coordinate proof.
Given Coordinates of vertices of quadrilateral ABCD
Prove Quadrilateral ABCD is a rectangle.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 269
Answer:

Question 9.
Write a proof to verify that the construction of the equilateral triangle shown below is valid.
Big Ideas Math Answer Key Geometry Chapter 5 Congruent Triangles 270
Answer:

Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns

Big Ideas Math Answers Grade 4 Chapter 6

Get free step-by-step solutions and explanations for all the available questions here. The students who are looking for Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns can download the pdf for free of cost. The BIM 4th Grade Chapter 6 contains all the topics that help the students to score good marks in the exams. The main aim of providing the Big Ideas Math Book 4th Grade Answer Key Chapter 6 Factors, Multiples, and Patterns is to make the students understand the concepts in an easy manner. Learn Big Ideas Grade 4 Math Answer Key with the help of the simple methods.

Big Ideas 4th Grade Math Book Answer Key Chapter 6 Factors, Multiples, and Patterns

The advantage of referring to our Big Ideas Math Answers Grade 4 Chapter 6 is you can refer to all the problems and also take practice tests for free of cost. Improve your math skills and score better marks in the exams with the help of the BIM 4th Grade Math Answer Key. Check out the below links for a better understanding of every topic. Just click on the links and grab the depth of knowledge on each topic. Practice real-time problems to gain more knowledge on concepts.

Lesson: 1 Understand Factors

Lesson: 2 Factors and Divisibility

Lesson: 3 Relate Factors and Multiples

Lesson: 4 Identify Prime and Composite Numbers

Lesson: 5 Number Patterns

Lesson: 6 Shape Patterns

Performance Task

Lesson 6.1 Understand Factors

Explore and Grow

Draw two different rectangles that each have an area of 24 square units. Label their side lengths.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 1
Compare your rectangles to your partner’s rectangles. How are they the same? How are they different?

Answer:

Explanation:
My rectangle is 6 × 4 and my partner’s rectangle is 3 × 8
We know that,
Area of rectangle = l × b
Hence,
According to the above formula, the areas of rectangles are the same irrespective of different lengths and different breadths.

Structure
How is each side length related to 24?

Answer: 
We know that,
The factors of 24 = 4 × 6, 3 × 8, 1 × 24, 2 × 12
Remember that,
a × b = b × a
So,
4 × 6 = 6 × 4
This pattern will be applicable to all factor pairs
Hence, from the above,
We can conclude that each side length is related to 24 because of the factor pair.

Think and Grow: Find Factor Pairs

You can write whole numbers as products of two factors. The two factors are called a factor pair for the number
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 2

Example
Find the factor pairs for 20.
Find the side lengths of as many different rectangles with an area of 20 square units as possible.

The side lengths of each rectangle are a factor pair.
So, the factor pairs for 20 are 12 and 1,  10 and 2,  and 5 and 4.

Show and Grow

Question 1.
Use the rectangles to find the factor pairs for 12.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 4
Answer: Factor pairs of 12 are: 12 and 1, 6 and 2, and 4 and 3

Explanation:

The factor pairs are nothing but the side lengths of a rectangle and the area of a rectangle gives the factor
Hence,
The factor pairs of 12 are: 12 and 1, 6 and 2, and 4 and 3

Question 2.
Draw rectangles to find the factor pairs for 16.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 5
Answer: The factor pairs of 16 are: 1 and 16, 2 and 8, 4 and  4

Explanation:

The factor pairs are nothing but the side lengths of a rectangle and the area of a rectangle gives the factor
Hence,
The factor pairs of 16 are: 1 and 16, 2 and 8, 4 and  4

Apply and Grow: Practice

Draw rectangles to find the factor pairs for the number.
Question 3.
14
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 6

Answer: The factor pairs of 14 are: 1 and 14, 2 and 7

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 14 are: 1 and 14, 2 and 7

Question 4.
15
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 7

Answer:  The factor pairs of 15 are: 1 and 15, 3 and 5

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 15 are: 1 and 15, 3 and 5

Question 5.
20
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 8

Answer: The factor pairs of 20 are: 1 and 20, 2 and 10, 4 and 5

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 15 are: 1 and 15, 3 and 5

Question 6.
36
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 9
Answer: The factor pairs of 36 are: 1 and 36, 2 and 18, 3 and 12, 4 and 9, 6 and 6

Explanation:

Factors are the numbers that divide the number completely.
Hence,
The factor pairs of 36 are: 1 and 36, 2 and 18, 3 and 12, 4 and 9, 6 and 6

Find the factor pairs for the number.
Question 7.
11
Answer: The factor pairs of 11 are: 1 and 11

Explanation:

Factors are the numbers that divide the original number completely.Hence,
The factor pairs of 15 are: 1 and 15, 3 and 5

Question 8.
9
Answer: The factor pairs of 9 are: 1 and 9, and 3 and 3

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 15 are: 1 and 15, 3 and 5

Question 9.
4

Answer: The factor pairs of 4 are: 1 and 4, 2 and 2

Explanation:
Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 4 are:
1 × 4, 2 × 2 ( Since 4 ×1 and 1 × 4 are equal, we will take any 1 factor )

Question 10.
25
Answer:  The factor pairs of 25 are: 1 and 25, 5 and 5

Explanation:
Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 25 are:
1 × 25, 5 × 5

Question 11.
10
Answer: The factor pairs of 10 are: 1 and 10, 2 and 5

Explanation:
Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 10 are:
1 × 10, 5 × 5

Question 12.
40
Answer: The factor pairs of 40 are: 1 and 40, 2 and 20, 4 and 10, 5 and 8

Explanation:
Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 40 are:
1 × 40, 2 × 20, 4 × 10 and 5 × 8

Question 13.
Writing
Use the word to explain one way that 2 and 6 are related.
Answer: The factor pair of 6 are: 1 and 6, 2 and 3

Explanation:
The one way 2 and  are related is the “Factor-pair method”
According to the factor-pair method,
The factors of 6 are:
1 × 6 and 2 × 3
Hence, from the above,
We can conclude that 2 and 6 are related due to the factor-pair method.

Think and Grow: Modeling Real Life

Example
You want to organize 30 pictures into a rectangular array on a wall. How many different arrays can you make?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 10
To find the number of arrays you can make, find the number of factor pairs for 30.
There are 3-factor pairs for 30.
You can use each factor pair to make 30 arrays.
So, there are 30 ×3 = 90 ways to organize the pictures in different arrays.

Show and Grow

Question 14.
A city mayor buys 27 solar panels. She wants to organize the panels into a rectangular array. How many different arrays can she make?

Answer: The different arrays she can make are: 1 × 27, 3 × 9, 9 × 3, and 27 × 1

Explanation:
Given that a city mayor buys 27 solar panels and she wants to organize the panels into a rectangular array.
The “Array” is nothing but the number of patterns ( Factor pairs)  that we can arrange the given things.
Hence,
The factors of 27 are: 1 and 27, 3 and 9, 9 and 3, and 27 and 1
Hence,
The different arrays she can make in arranging the solar panels are:
1 × 27, 3 × 9, 9 × 3, and 27 × 1

Question 15.
DIG DEEPER!
A store owner has 42 masks to hang in a rectangular array on a wall. The owner does not have room for more than 10 masks in each row or column. What are the possible numbers of masks the owner should hang in each row?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 11

Answer: The number of possible masks the owner should hang in each row is: 7 masks

Explanation:
Given that a store owner has 42 masks to hang in a rectangular array on a wall.
So now,
The number of arrays ( Factor pairs ) of 42 are:
1 × 42, 2 × 21, 3 × 14, 6 × 7, 7 × 6, 14 × 3, 21 × 2, and 41 × 1
It is also given that the owner does not have enough room for more than 10 masks in each row or column.
So, from the above factor pairs, we can say that the possible array of masks is: 6 × 7 and 7 × 6
Hence, from the above,
we can conclude that the maximum number of masks the owner can put either in rows or columns is: 7 masks

Question 16.
A teacher wants to set up a chair for each of the 48 students in chorus. He wants to set up the chairs in a rectangular array. He can fit no more than 20 rows and no more than 30 chairs in each row in the room. What are the possible numbers of rows that he could set up?

Answer:  The possible number of rows that he could set up are: 16 rows

Explanation:
Given that a teacher wants to set up a chai for each of the 48 students in the chorus and he wants to set up the chairs in a rectangular array.
Hence, the number of arrays ( factor pairs) of 48 are:
1 × 48, 2 × 24, 3 × 16, 4 × 12, 6 × 8, 8 × 6, 12 × 4, 16 × 3, 24 × 2, and 48 × 1
It is also given that he can fit no more than 20 rows and no more than 30 chairs in each row in the room.
Hence, from the above,
We can conclude that the possible number of rows that he could set up are: 16 rows

Understand Factors Homework & Practice 6.1

Question 1.
Use the rectangles to find the factor pairs for 8.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 12

Answer: The factors of 8 are: 1 and 8, 2 and 4

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 8 are: 1 × 8 and 2 × 4

Question 2.
Draw rectangles to find the factor pairs for 21.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 13

Answer: The factor pairs of 21 are: 1 × 21, 3 × 7

Explanation:

Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 21 are: 1 × 21, 3 × 7

Question 3.
Draw rectangles to find the factor pairs for 28.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 14

Answer: The factor pairs of 28 are: 1 × 28, 2 × 14, 4 × 7

Explanation:


Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 28 are: 1 × 28, 2 × 14, 4 × 7

Find the factor pairs for the number.
Question 4.
13
Answer: The factor pairs of 13 are: 1 × 13 and 13 × 1

Explanation:
Factors are the numbers that divide the original number completely. Hence,
The factor pairs of 13 are:
1 × 13 and 13 × 1

Question 5.
5
Answer: The factor pairs of 5 are: 1 × 5 and 5 × 1

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 5 are:
1 × 5 and 5 × 1

Question 6.
35
Answer: The factor pairs of 35 are: 1 × 35, 5 × 7

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 35 are:
1 × 35, 5 × 7

Question 7.
45
Answer: The factor pairs of 45 are: 1 × 45, 3 × 15, 5× 9

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 45 are:
1 × 45, 3 × 15, 5× 9

Question 8.
18
Answer: The factor pairs of 18 are: 1 × 18, 2 × 9, 3 × 6

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 18 are:
1 × 18, 2 × 9, 3 × 6

Question 9.
36
Answer: The factor pairs of 36 are: 1 × 36, 2 × 18, 3 × 12, 4 × 9, 6 × 6

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 36 are:
1 × 36, 2 × 18, 3 × 12, 4 × 9, 6 × 6

Question 10.
YOU BE THE TEACHER
Descartes says there are 5-factor pairs for 16. Newton says there are 3-factor pairs for 16. Who is correct? Explain.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 15

Answer:  Newton is correct

Explanation:
We know that,
a × b = b × a
Hence,
The factor pairs of 16 are:
1 × 16, 2 × 8, 4 × 4, 8 × 2, 16 × 1
But according to the above,
We don’t have to consider the factor pairs 8 × 2 and 16 × 1
Hence,
There are only 3-factor pairs.
But, Descartes says that there are 5-factor pairs for 16 while Newton says it three.
Hence, from the above,
We can conclude that Newton is correct.

Question 11.
Modeling Real Life
A race volunteer has 50 cases of bottled water. He wants to arrange the cases into a rectangular array. How many different arrays can he make?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.1 16

Answer: The number of different arrays he can make is: 6 arrays

Explanation:
Given that a race volunteer has 50 cases of bottled water and he wants to arrange the cases into a rectangular array.
The array is nothing but the factor pairs.
Hence, the number of arrays of 50 he can make = 1 × 50, 2 × 25, 5 × 10, 10 × 5, 25 × 2, 50 × 1
Hence, from the above,
we can conclude that the number of different arrays to arrange the 50 cases of bottled water are:
a) 1 × 50 b)  2 × 25 c)  5 × 10 d)  10 × 5 e)  25 × 2 f)  50 × 1

Review & Refresh

Find the product.
Question 12.
2 × 14 = _____
Answer: 2 × 14 = 28

Explanation:
According to the Distributive Property of Multiplication,
2 × 14 = ( 10 + 4 ) × 2
= ( 2 × 10 ) + ( 2 × 4 )
= 20 + 8
= 28
Hence, 2 × 14 = 28

Question 13.
22 × 7 = ______
Answer: 22 × 7 = 154

Explanation:
According to the Distributive Property of Multiplication,
22 × 7 = ( 20 + 2 ) × 7
= ( 20 × 7 ) + ( 2 × 7 )
= 140 + 14
= 154
Hence, 22 × 7 = 154

Question 14.
9 × 27 = ______
Answer: 27 × 9 = 243

Explanation:
According to the Distributive Property of Multiplication,
27 × 9 = ( 20 + 7 ) × 9
= ( 20 × 9 ) + ( 7 × 9 )
= 180 + 63
= 243
Hence, 27 × 9 = 243

Lesson 6.2 Factors and Divisibility

Explore and Grow

List any 10 multiples of 3. What do you notice about the sum of the digits in each multiple?
Answer:
The 10 multiples of 3 are:
3, 6, 9, 12, 15, 18 ,21, 24, 27, and 30
From the sum of the digits in the above multiples,
0 + 3 =3
0 + 6 = 6
0 + 9 = 9
1 + 2 = 3
1 + 5 = 6
2 + 1 = 3
2 + 4= 6
2 + 7 = 9
3 + 0 = 3
Hence, from the above sums,
We can conclude that the sum of the digits in the 10 multiples are also the multiples of 3.

List any 10 multiples of 9. What do you notice about the sum of the digits in each multiple?
Answer:
The 10 multiples of 9 are:
9, 18, 27, 36, 45, 54, 63, 72, 81, and 90
From the sum of the digits in the above multiples,
0 + 9 = 9
1 + 8 = 9
2 + 7 = 9
3 + 6 = 9
4 + 5 = 9
5 + 4 = 9
6 + 3 = 9
7 + 2 = 9
8 + 1 = 9
9 + 0 = 9
Hence, from the above,
We can conclude that the sum of the digits in all the multiples of 9 is equal to 9 only.

Structure
How can you use your observations above to determine whether 3 and 9 are factors of a given number? Explain.
Answer: The factors of 9 are: 1,3, and 9

Explanation:
The factor pairs of 9 are:
1 × 9, 3 × 3 and 9 × 1
Hence, from the above,
We can conclude that 3 and 9 are the factors of 9.

Think and Grow: Find Factors and Factor Pairs

A number is divisible by another number when a quotient is a whole number and the remainder is 0.

Some numbers have divisibility rules that you can use to determine whether they are factors of other numbers.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 1
Example
Find the factor pairs for 48.
Use divisibility rules and division to find the factors of 48.

The factors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, and 48.
The factor pairs for 48 are 6.

Show and Grow

Find the factor pairs for the number.
Question 1.
30
Answer:
The factor pairs of 30 are:
1 × 30, 2 × 15, 3 × 10, 5 × 6, 6 × 5, 10 × 3, 15 × 2, 30 × 1

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 30 are:
1 × 30, 2 × 15, 3 × 10, 5 × 6, 6 × 5, 10 × 3, 15 × 2, 30 × 1

Question 2.
54
Answer:
The factor pairs of 54 are:
1 × 54, 2 × 27, 3 × 18, 6 × 9, 9 × 6, 18 × 3, 27 × 2, 54 × 1

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 54 are:
1 × 54, 2 × 27, 3 × 18, 6 × 9, 9 × 6, 18 × 3, 27 × 2, 54 × 1

Apply and Grow: Practice

Find the factor pairs for the number.
Question 3.
29
Answer:
The factor pairs of 29 are:
1 × 29 and 29 × 1

Explanation:
Factors are the numbers that divide the original numbers completely.
Hence,
The factor pairs of 29 are:
1 × 29 and 29 × 1

Question 4.
50
Answer:
The factor pairs of 50 are:
1 × 50, 2 × 25, 5 × 10, 10 × 5, 25 × 2, and 50 × 1

Explanation:
Factors are the numbers that divide the original numbers completely.
Hence,
The factor pairs of 50 are:
1 × 50, 2 × 25, 5 × 10, 10 × 5, 25 × 2, and 50 × 1

Question 5.
63
Answer:
The factor pairs of 63 are:
1 × 63, 3 × 21, 7 × 9, 9 × 7, 21 × 3 and 63 × 1

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 63 are:
1 × 63, 3 × 21, 7 × 9, 9 × 7, 21 × 3 and 63 × 1

Question 6.
33
Answer:
The factor pairs of 33 are:
1 × 33, 3 × 11, 11 × 3 and 33 × 1

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 33 are:
1 × 33, 3 × 11, 11 × 3 and 33 × 1

Question 7.
60
Answer:
The factor pairs of 60 are:
1 × 60, 2 × 30, 3 × 20, 4 × 15, 5 × 12, and 6 × 10

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 60 are:
1 × 60, 2 × 30, 3 × 20, 4 × 15, 5 × 12, and 6 × 10

Question 8.
64
Answer:
The factor pairs of 64 are:
1 × 64, 2 × 32, 4 × 16, and 8 ×8

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 64 are:
1 × 64, 2 × 32, 4 × 16, and 8 ×8

List the factors of the number.
Question 9.
39
Answer:
The factors of 39 are: 1, 3, 13, and 39

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 39 are: 1, 3, 13, and 39

Question 10.
44
Answer:
The factors of 44 are: 1, 2, 4, 11, 22, and 44

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 44 are: 1, 2, 4, 11, 22, and 44

Question 11.
72
Answer:
The factors of 72 are: 1, 2, 3,4, 6, 8, 9, 12, 18, 24, 36, and 72

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 72 are: 1, 2, 3,4, 6, 8, 9, 12, 18, 24, 36, and 72

Question 12.
67
Answer:
The factors of 7 are: 1 and 67

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 7 are: 1 and 67

Question 13.
42
Answer:
The factors of 42 are: 1, 2, 3, 6, 7, 14, 21, and 42

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 42 are: 1, 2, 3, 6, 7, 14, 21, and 42

Question 14.
28
Answer:
The factors of 28 are:
1, 2, 4, 7, 14, and 28

Explanation:
Factors are the numbers that divide the number originally
Hence,
The factors of 28 are:
1, 2, 4, 7, 14, and 28

Question 15.
Reasoning
Can an odd number have an even factor? Explain.
Answer: No, an odd number doesn’t have an even factor

Explanation:
Let the number which we want to find the factors is: 15
The factors of 15 are:
1, 3, 5, and 15
Hence, from the above factors,
We can conclude that an odd number doesn’t have an even factor.
Note: The “Odd number” is the number that can’t be divisible by 2.

Question 16.
Writing
Use the diagram to explain why you do not have to check whether any numbers greater than 4 are factors of 12.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 3
Answer: We don’t have to check the numbers greater than 4 are the factors of 12 because the factors of 12 greater than 4 are repeating.

Explanation:
The given number is 12
The factors of 12 are:
1, 2, 3, 4, 6, and 12
Hence, from the above
We can conclude that we don’t have to check the numbers greater than 4 are the factors of 12.

Think and Grow: Modeling Real Life

Example
There are 4 classes going on a field trip. The classes will use 3 buses. Can the teachers have an equal number of students on each bus?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 4
Think: What do you know? What do you need to find? How will you solve it?
Step 1: Add to find how many students are going on the field trip.
24 + 23 + 25 + 20 = 92
92 students are going on the field trip.
Step 2: Is the total number of students divisible by the number of buses?
Find the sum of the digits of 92. 9 + 2 =11
The sum of the digits not divisible by 3.
The teachers don’t have an equal number of students on each bus.

Show and Grow

Question 17.
A teacher is making a 5-page test with 28 vocabulary problems and 7 reading problems. Can the teacher put an equal number of problems on each page?
Answer: Yes, the teacher can put an equal number of problems on each page

Explanation:
Given that a teacher is making a 5- page test.
It is also given that there are 28 vocabulary problems and 7 reading problems.
So,
Total number of problems = 28 + 7 = 35 problems
So,
The number of problems that each page contains = 35 ÷ 5
Now,
By using the Distributive Property of Multiplication,
35 ÷ 5 = ( 30 + 5 ) ÷ 5
= ( 30 ÷ 5 ) + ( 5 ÷ 5 )
= 6 + 1
= 7
Hence, from the above,
We can conclude that the teacher can put an equal number of problems on each page.

Question 18.
A relay race is 39 laps long. Each team member must bike the same number of laps. Could a team have 8, 6, or 3 members? Explain.
Answer: A team has 3 members.

Explanation:
Given that a relay race is 39 laps long and each member must bike the same number of laps.
Now,
The factors of 39 are: 1, 3, 13, and 39
The factors are the numbers that divide the number originally.
So, 39 can be divided by 3 only.
Hence, from the above,
We can conclude that each team has only 3 members.

Question 19.
DIG DEEPER!
You have 63 clay figures to display on 7 shelves. Not all of the shelves need to be used and each shelf can hold no more than 25 figures. Each shelf must have the same number of figures. What are all the ways you could arrange the figures?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 5
Answer: The number of ways you could arrange the figures is to find the number of factors of 63.
So,
The number of factors of 63 is: 1, 3, 7,9 21, and 63

Explanation:
Given that you have 63 clay figures to display on 7 shelves.
It is also given that each shelf holds no more than 25 figures.
Now,
The factors of  63 are: 1, 3, 7,9 21, and 63
The “Factors” are the ways to arrange the given clay figures.
So,
The number of ways to arrange the clay figures that do not hold more than 25 is: 3, 7, 9, and 21
Hence, from the above,
We can conclude that the number of ways to arrange the clay figures in each shelf that do not hold more than 25 figures is: 3, 7, 9, and 21 ways

Factors and Divisibility Homework & Practice 6.2

Find the factor pairs for the number.
Question 1.
24
Answer:
The factor pairs of 24 are:
1 × 24, 2 × 12, 3 × 8, 4 × 6, 6 × 4, 8 × 3, 12 × 2, and 24 × 1

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 24 are:
1 × 24, 2 × 12, 3 × 8, 4 × 6, 6 × 4, 8 × 3, 12 × 2, and 24 × 1

Question 2.
48
Answer:
The factor pairs of 48 are:
1 × 48, 2 × 24, 3 × 16, 4 × 12, 6 × 8

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 48 are:
1 × 48, 2 × 24, 3 × 16, 4 × 12, 6 × 8

Question 3.
31
Answer:
The factor pairs of 31 are:
1 × 31 and 31 × 1

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 31 are:
1 × 31 and 31 × 1

Question 4.
99
Answer:
The factor pairs of 99 are:
1 × 99, 3 × 33, 9 × 11

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 99 are:
1 × 99, 3 × 33, 9 × 11

Question 5.
45
Answer:
The factor pairs of 45 are:
1 × 45, 3 × 15, and 5 × 9

Explanation:
factors are the numbers that divide the number originally.
Hence,
The factor pairs of 45 are:
1 × 45, 3 × 15, and 5 × 9

Question 6.
26
Answer:
The factor pairs of 26 are:
1 × 26, 2 × 13

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factor pairs of 26 are:
1 × 26, 2 × 13

List the factors of the number.
Question 7.
25
Answer:
The factors of 25 are: 1, 5, and 25

Explanation:
Factors are the numbers that divide the numbers originally.
Hence,
The factors of 25 are: 1, 5, and 25

Question 8.
56
Answer:
The factors of 56 are: 1, 2, 4, 7, 8, 14, 28 and 56

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 56 are: 1, 2, 4, 7, 8, 14, 28 and 56

Question 9.
75
Answer:
The factors of 75 are: 1, 3, 5, 15, 25, and 75

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 75 are: 1, 3, 5, 15, 25, and 75

Question 10.
80
Answer:
The factors of 80 are: 1, 2, 4, 5, 8, 10, 16, 20,40 and 80

Explanation:
Factors are the numbers that divide the numbers originally.
Hence,
The factors of 80 are: 1, 2, 4, 5, 8, 10, 16, 20,40 and 80

Question 11.
93
Answer:
The factors of 93 are: 1, 3, 31 and 93

Explanation;
Factors are the numbers that divide the number originally.
Hence,
The factors of 93 are: 1, 3, 31 and 93

Question 12.
61
Answer:
The factors of 61 are: 1 and 61

Explanation:
Factors are the numbers that divide the number originally.
Hence,
The factors of 61 are: 1 and 61

Question 13.
Reasoning
Why does a number that has 9 as a factor also have 3 as a factor?
Answer: The number that has 9 as a factor also have 3 as a factor because 9 is a multiple of 3

Explanation:
Let the number that has 9 as a factor and that has also 3 as a factor be: 18
Now,
The factors of 18 are: 1, 2, 3, 6, 9, and 18
Hene, from the above,
We can conclude that the number that has 9 as a factor also have 3 as a factor.

Question 14.
DIG DEEPER!
The number below has 3 as a factor. What could the unknown digit be?
3 _____ 5.
Answer: The unknown digit could be: 1 or 4 or 7

Explanation:
Given that the number has 3 as a factor.
To have 3 as a factor, the sum of the digits in the given number should be a multiple of 3
Hence,
The unknown digit in 3____5 could be: 1 or 4 or 7

Question 15.
Number Sense
Which numbers have 5 as a factor?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 6
Answer: The numbers which have 5 as a factor are: 50, 25, 1,485 and 100

Explanation:
Given numbers are: 50, 34, 25, 1,485, 100 and 48
The numbers that have the factor of 5 must have the last digits 0 or 5
Hence,
The numbers that have 5 as a factor are: 50, 25, 1,485, and 100

Question 16.
Modeling Real Life
You and a partner are conducting a bottle flipping experiment. You have 3 bottles with different amounts of water in each. You need to flip each bottle 15 times. If you take turns, will you and your partner each get the same number of flips?
Answer: Yes, you and your partner will each get the same number of flips.

Explanation:
Given that you and your partner are conducting a bottle flipping experiment and you have 3 bottles with different amounts of water in each and you need to flip each bottle 15 times.
So,
The number of flips each will get = 15 ÷ 3
Now,
By using the Distributive Property of Multiplication,
15 ÷ 3 = ( 12 + 3 ) ÷ 3
= ( 12 ÷ 3 ) + ( 3 ÷ 3 )
= 4 + 1
= 5
Hence, from the above,
We can conclude that each bottle will flip 5 times.

Question 17.
Modeling Real Life
A florist has 55 flowers. She wants to put the same number of flowers in each vase without any leftover Should she put 2, 3, or 5 flowers in each vase? Explain.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 7
Answer: The florist put 5 flowers in each vase.

Explanation:
Given that a florist has 55 flowers and she wants to put the same number of flowers in each vase without any leftover.
The number 55 will be divided by to not have any leftover because the last digit is 5.
Hence,
The florist puts 5 flowers in each vase.

Review & Refresh

Compare.
Question 18.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 8
Answer: 7,914 is greater than 7,912

Explanation:
Given numbers are 7,914 and 7,912
Hence, from the above,
We can conclude that 7,914 is greater than 7,912

Question 19.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 9
Answer: 65,901 is less than 67,904

Explanation:
Given numbers are 65,901 and 67,904
Hence, from the above,
We can conclude that 65,901 is less than 67,904

Question 20.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.2 10
Answer: 839,275 is equal to 839,275

Explanation:
Given numbers are 839,275 and 839,275
Hence, from the above,
We can conclude that 839,275 is equal to 839,275

Lesson 6.3 Relate Factors and Multiples

Explore and Grow

List all factors of 24.
Answer:
The factors of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24

Explanation:
Factors are the numbers that divide the numbers originally.
Hence,
The factors of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24

List several multiples of each factor. What number appears in each list?
Answer:
The factors of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24

Explanation:
The factors of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24
Now,
There are no other multiples of 1
The multiples of 2 are: 1, 2
The multiples of 3 are: 1,3
The multiples of 4 are: 1, 2, 4
The multiples of 6 are: 1, 2, 3 and 6
The multiples of 8 are: 1, 2, 4 and 8
The multiples of 12 are: 1, 2, 3, 4, 6, and 12
The multiples of 24 are: 1, 2, 3, 4, 6, 8, 12 and 24
Hence, from the above,
We can conclude that 1 appears in each list

Number Sense
How are factors and multiples related?
Answer:
Factors are the numbers that can divide the numbers originally.
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.

Think and Grow: Identify Multiples

A whole number is a multiple of each of its factors.
12 is a multiple of 1, 2, 3, 4, 6, and 12.
1 × 12 = 12
2 × 6 = 12
3 × 4 = 12
4 × 3 = 12
6 × 2 = 12
12 × 1 = 12

Example
Is 56 a multiple of 7?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 1
One Way:
List multiples of 7.
7, 14, 21, 28, 35, 42, 49, 56
So, 56  is a multiple of 7.
Another Way:
Use division to determine whether 7 is a factor of 56.
56 ÷ 7 = 8
7 is a factor of 56.
So, 56 is a multiple of 7.

Example
Is 9 a factor of 64?
One Way:
Use divisibility rules to determine whether 9 is a factor of 64.
9 is not a factor of 64 because 6 + 4 = 10 is not divisible by 9.
Another Way:
List the multiples of 9.
9, 18, 27, 36, 45, 54, 63, 72
64 is not a multiple of 9.
So, 9 is not a factor of 64.

Show and Grow

Question 1.
Is 23 a multiple of 3? Explain.
Answer: 23 is not a multiple of 3

Explanation:

Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30
Hence, from the above,
We can conclude that 23 is not a multiple of 3.

Question 2.
Is 8 a factor of 56? Explain.
Answer: 8 is a factor of 56.

Explanation:
Factors are the numbers that divide the numbers originally.
Now,
The factors of 56 are: 1, 2, 4, 7, 8, 14, 28, and 56
Hence, from the above,
We can conclude that 8 is a factor of 56.

Apply and Grow: Practice

Question 3.
Is 65 a multiple of 5? Explain.
Answer: 65 is a multiple of 5

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 5 are: 5, 10, 15, 20, 25, 30, 35,40, 45, 50, 55, 60 and 65
Hence, fro the above,
We can conclude that 65 is a multiple of 5.

Question 4.
Is 14 a multiple of 4? Explain.
Answer: 14 is not a multiple of 4.

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, 32, 36, and 40
Hence, from the above,
We can conclude that 14 is not a multiple of 4.

Question 5.
Is 23 a multiple of 2? Explain.
Answer: 23 is not a multiple of 2

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 2 are: 2, 4, 6, 8, 10, 1, 14, 16, 18, 20, 22, 24 and 26
Hence, from the above,
We can conclude that 23 is not a multiple of 2.

Question 6.
Is 6 a factor of 96? Explain.
Answer: 6 is a factor of 96

Explanation:
Factors are the numbers that divide the number originally.
The factors of 96 are: 1, 2, 3, 4, 6, 8, 12, 16, 28, 32, 48 and 96
Hence, from the above,
We can conclude that 6 is a factor of 96.

Question 7.
Is 3 a factor of 82? Explain.
Answer: 82 is not a factor of 3

Explanation:
Factors are the numbers that divide the number originally.
The given number is 82
The sum of digits of 82 = 8 + 2 = 11
The number is a multiple of 3 only then the sum of the digits of that number is a multiple of 3.
But the sum of digits of 82 is not a multiple of 3
Hence, from the above,
we can conclude that 3 is not a factor of 82

Question 8.
Is 9 a factor of 72? Explain.
Answer: 9 is a factor of 72

Explanation:
Factors are the numbers that divide the number originally.
The factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72
Hence, from the above,
We can conclude that 9 is a factor of 72.

Tell whether 8 is a multiple or a factor of the number. Write multiple, factor or both.
Question 9.
4
Answer: 8 is a multiple of 4.

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 4 are: 4, 8, 12, 16, and 20
Hence, from the above,
We can conclude that 8 is a multiple of 4

Question 10.
8
Answer: 8 is a multiple of 8

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 8 are: 8, 16, 24, 32, 0, etc.
Hence, from the above,
We can conclude that 8 is a multiple of 8

Question 11.
32
Answer: 32 is a multiple of 8

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 8 are: 8, 16, 24, 32, 40, 48 etc
Hence, from the above,
We can conclude that 32 is a multiple of 8

Question 12.
Writing
Use numbers 6 and 12 to explain how factors and multiples are related.
Answer:
The multiplication Expression using numbers 6 and 12 is:
6 × 2 = 12
From the multiplication Expression,
6 is a factor of 12
12 is a multiple of 6

Explanation:
The given numbers re 6 and 12
From the given numbers, the multiplication Expression is:
6 × 2 = 12
Hence, from the above multiplication Expression,
6 is a factor of 12
12 is a multiple of 6.

Question 13.
Complete the Venn diagram.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 2
Answer:

Explanation:
From the given Venn diagram,
The factors of 40 are: 1, 2, 4, 5, 8, 10, 20, and 40
The first 10 multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50
Hence, from the above,
The common numbers from both the factors of 4 and the multiples of 5 are:
5, 10, 20 and 40

Think and Grow: Modeling Real Life

Example
You need 96 balloons for a school dance. Balloons come in packs of 4, packs of 6, and packs of 9. Which packs could you buy so you have no leftover balloons?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 3
Use division to determine whether 96 is a multiple of 4.
4 √96 So, 4  is a factor of 96, and 96  is a multiple of 4.
Use the divisibility rules to check whether 96 is a multiple of 6.
96 is even and 9 + 6 = 15 divisible by 3. So, 6  is a factor of 96 and 96  is a multiple of 6.
Use the divisibility rules to check whether 96 is a multiple of 9.
9 + 6 = 15  is not  divisible by 9. So, 9  is not a factor of 96 and
96  is not a multiple of 9.
You could buy packs of 4 balloons or packs of 6 balloons.

Show and Grow

Question 14.
A teacher needs 88 batteries for science experiments. Batteries are sold in packs of 2, packs of 6, and packs of 8. Which packs could the teacher buy so she has no leftover batteries?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 4
Answer: The teacher should buy the packs of 2 and packs of 8 so that there will be no leftover batteries.

Explanation:
Given that a teacher needs 88 batteries for science experiments and that batteries are sold in packs of 2, 6, and 8.
So,
The factors of 88 are: 1, 2, 4, 8, 11, 22, 44, and 88
So, from the factors of 88, we see that there is no 6 as a factor of 88
So, from this, we can say that we can’t pack 88 batteries in packs of 6 but in the packs of 2 and 8 ( Since 2 and 8 both are the factors of 88 )
We know that,
Factors are the numbers that divide the number originally.
Hence, from the above,
We can conclude that the 88 batteries can be packed in packs of 2 or packs of 8.

Question 15.
DIG DEEPER!
Descartes buys 2 books for a total of $15. Each book costs a multiple of $3. How much could each book cost?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 5

Answer: The cost of each book that Descartes bought is: $15

Explanation:
Given that Descartes bought 3 books for a total of $15 and each book costs a multiple of $3
So,
The cost of each book = The total cost of 2 books ÷ Total number of books
= 15 ÷ 2
Now,
By using the Distributive Property of Multiplication,
15 ÷ 2 = ( 12 + 3 ) ÷ 2
( 12 ÷ 2 ) + ( 3 ÷ 2 )
= 6 + 1.5
= 7.5
Hence, from the above,
We can conclude that the cost of each book is: $7.5 and the cost of each book is also a multiple of $3

Question 16.
Newton buys some boxes of dog treats for $9 each. Descartes buys some bags of cat treats for $6 each. Newton and Descartes spend the same amount of money on treats. What is the least amount of money they could have spent?

Answer: The least amount of money that Newton and Descartes spent on dog treats = $18

Explanation:
Given that Newton buys some boxes of dog treats for $9 each and Descartes buys some bags of cat treats for $6 each.
It is also given that Newton and Descartes spend the same amount of money on treats
So, we have to find the least number that can be a multiple of both 6 and 9.
Now,
the multiples of 6 are: 6, 12, 18, 24, 30, 36, 42, 48, 54, and 60
The multiples of 9 are: 9, 18, 27, 36, 45, 54, 63, 72, 81, and 90
From the multiples of 6 and 9,
We can see that the least number that can be the multiple of both 6 and 9 is: 18
Hence, from the above,
We can conclude that the least amount of money that Newton and Descartes spent on dog treats is: $18

Relate Factors and Multiples Homework & Practice 6.3

Question 1.
Is 16 a multiple of 3? Explain.
Answer: 16 is not a multiple of 3

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 16 are 3, 6,9, 12, 15, 18, etc.
Hence, from the above,
We can conclude that 16 is not a multiple of 3.

Question 2.
Is 21 a multiple of 7? Explain.
Answer: 21 is a multiple of 7

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 7 are: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70
Hence, from the above,
We can conclude that 21 is a multiple of 7

Question 3.
Is 46 a multiple of 2? Explain.
Answer: 46 is a multiple of 2

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
For the multiple of 2, the last digit should be 2, 4, 6, 8, 0
So,
46 can be said as a multiple of 2
Hence, from the above,
We can conclude that 46 is a multiple of 2.

Question 4.
Is 5 a factor of 71? Explain.
Answer: 5 is not a factor of 71

Explanation:
Factors are the numbers that divide the number completely.
So,
The factors of 71 are: 1, 71
Hence, from the above,
We can conclude that 5 is not a factor of 71.

Question 5.
Is 8 a factor of 88? Explain.
Answer: 8 is a factor of 88

Explanation:
Factors are the numbers that divide the numbers completely
So,
The factors of 88 are: 1, 2, 4, 8, 11, 22, 44, 88
Hence, from the above factors,
We can conclude that 8 is a factor of 88

Question 6.
Is 4 a factor of 80? Explain.
Answer: 4 is a factor of 80

Explanation:
Factors are the numbers that divide the number completely.
So,
The factors of 80 are: 1, 2, 4, 5, 8, 10, 16, 20, 40, 80
Hence, from the above factors,
We can conclude that 4 is a factor of 80.

Tell whether 30 is a multiple or a factor of the number. Write multiple, factor, or both.
Question 7.
30
Answer: 30 is a multiple and factor of 30

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
Factors are the numbers that divide the number completely
So,
The multiples of 30 are: 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300
The factors of 30 are: 1, 2, 3, 5, 6, 10, 15, 30
Hence,
From the above,
We can conclude that 30 is a multiple and factor of 30

Question 8.
90
Answer: 90 is a multiple of 30

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 30 are: 30, 60, 90, 120, 150, 180, 210, 240, 270, 300
Hence, from the above multiples,
We can conclude that 90 is a multiple of 30

Question 9.
10
Answer: 10 is a factor of 30

Explanation:
Factors are the numbers that divide the number originally.
So,
The factors of 30 are: 1, 2, 3, 5, 6, 10, 15, 30
Hence, from the above factors,
We can conclude that 10 is a factor of 30

Tell whether 10 is a multiple or a factor of the number. Write multiple, factor, or both.
Question 10.
5
Answer: 5 is a factor of 10

Explanation:
Factors are the numbers that divide the number completely.
So,
The factors of 10 are: 1, 2, 5, 10
Hence, from the above factors,
We can conclude that 5 is a factor of 10

Question 11.
60
Answer: 60 is a multiple of 10

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
So,
The multiples of 10 are: 10, 20, 30, 40, 50, 60, 70, 80 , 90, 100
Hence, from the above multiples,
We can conclude that 60 is a multiple of 10

Question 12.
10
Answer: 10 is a multiple and factor of 10

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
Factors are the numbers that divide the number completely
So,
The number of factors of 10 is: 1, 2, 5, 10
The multiples of 10 are: 10, 20, 30, 40, 50, 60, 70, 80 , 90, 100
Hence, from the above,
We can conclude that 10 is a factor and a multiple of 10

Question 13.
DIG DEEPER!
Name two numbers that are each a multiple of both 3 and 4. What do you notice about the two multiples?
Answer: 12 is a multiple of both 3 and 4

Explanation:
We know that,
If the number is divisible by 3, then the sum of the digits of that given number must be divisible by 3
If the number is divisible by 4, then the last 2 digits of that given number must also be divisible by 4
Hence,
The number which is a multiple of both 3 and 4 is: 12
12 will satisfy both the conditions of the number divisible by 3 and 4
Hence, from the above,
We can conclude that 12 is a multiple of both 3 and 4

Question 14.
YOU BE THE TEACHER
Is Newton correct? Explain.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 6

Answer: Yes, Newton is correct

Explanation:
Given that,
According to Newton, all numbers that are multiples of 10 have 2 as a factor.
Now,
The multiples of 10 are: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
So,
Let a multiple of 10 be 20
So,
The factors of 20 are: 1, 2, 4, 5, 10, 20
Hence, from the above,
We can conclude that Newton’s statement is correct

Question 15.
Logic
A quotient is a multiple of 4. The dividend is a multiple of 8. The divisor is a factor of 6. Write one possible equation for the problem.

Answer:
The possible equation for the problem is:
24 ÷ 6 = 4

Explanation:
Given that a quotient is a multiple of 4.
It is also given that the dividend is a multiple of 8 and the divisor is a factor of 6.
So,
The possible Equation for the given problem is:
24 ÷ 6 = 4
Where,
24 is a dividend
6 is a divisor
4 is a quotient
Hence, from the above,
We can conclude that the possible  equation according to the given conditions is:
24 ÷ 6 = 4

Question 16.
Modeling Real Life
Your friend needs our friend needs t0 50 US state capitals. She wants to memorize the same number of capitals each day. Which numbers of capitals can she memorize each day: 2, 3, 4, or 5?

Answer: The number of capitals she can memorize each day in packs of 2 and 5

Explanation:
Given that your friend needs 50 US state capitals and she wants to memorize the same number of capitals each day.
It is also given that the number of capitals she had to memorize in the packs of 2, 3, 4, or 5
So,
If the number has to be divided by 5, the last digit of that given number should be 5 (or) 0
So,
The factors of 50 are: 1, 2, 5,  10, 25, 50
Hence, from the above,
We can conclude that 50 US capitals she had to memorize is in the packs of 2 or packs of 5

Question 17.
Modeling Real Life
Zookeepers plan an enrichment day for the animals every 7 days and bathe the elephants every 2 days. You want to go to the zoo when both events are happening. What other dates in May will this happen?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 7

Answer: The events of both Enrichment day and Elephant Day come in the month of May other than 14 May is:
21 May and 28 May

Explanation:
Given that Zookeepers plan an enrichment day for the animals every 7 days
It is also given that the Elephant bathing takes place every 2 days.
So, other than 14 May,
The other days that these two events will take place on May are: 21 May and 28 May with 7 days gap from 14 May
Hence, from the above,
We can conclude that  both the events are happening on 21 and 28 May

Review & Refresh

Estimate the sum or difference.
Question 18.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 8
Answer: 71,606 – 49,641 = 21,965

Question 19.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 9
Answer: 75,294 + 36,043 = 111,337

Question 20.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.3 10
Answer: 93,294 – 40,293 = 53,001

Lesson 6.4 Identify Prime and Composite Numbers

Explore and Grow

Draw as many different rectangles as possible that each has the given area. Label their side lengths.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 1
Compare the numbers of factors of 32 and 13.

Answer:
The factors of 32 are: 1, 2, 4, 8, 16, 32
The factors of 13 are: 1, 13
On comparison of the factors of 32 and 13, we can say that 13 has less number of factors than 32

Reasoning
Can a whole number have fewer than two factors? exactly two factors? more than two factors?

Answer: Yes, a whole number has exactly 2 factors and more than 2 factors but not less than 2 factors.

Explanation:
A whole number will be divided into 2 types based on the number of factors. They are:
A) Composite numbers:
The numbers that have more than 2 factors are called “Composite numbers”
B) Prime numbers:
The numbers that have exactly 2 factors are called “Prime numbers”
There will no less than 2 factors for any number.

Think and Grow: Identify Prime and Composite Numbers
A prime number is a whole number greater than 1 with exactly two factors, 1 and itself. A composite number is a whole number greater than 1 with more than two factors.

Example
Tell whether 27 is a prime composite
Use divisibility rules.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 2
• 27 is odd, so it is not divisible by 2 or any other even number.
• 2 + 7 = 9 is divisible by 3,
so 27 is divisible by 3.
27 has factors in addition to 1 and itself.
So, 27 is a Composite number.

Example
Tell whether 11 is a prime composite
Use divisibility rules.
• 11 is odd, so it is not divisible by 2 or any other even number.
• 1 + 1 = 2 is not divisible by 3 or 9,
so 11 is not divisible by 3 or 9.
• The ones digit is not 0 or 5,
so 11 is not divisible by 5.
11 has exactly two factors, 1 and itself.
So, 11 is a prime number.

Show and Grow

Tell whether the number is prime or composite. Explain.
Question 1.
7
Answer: 7 is a prime number

Explanation:
Prime number:
The numbers which have exactly 2 factors 1 and itself is called “Prime numbers”
Now,
The factors of 7 are: 1, 7
Hence, from the above,
We can conclude that 7 is a prime number

Question 2.
12
Answer: 12 is a Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 12 are: 1, 2, 3, 4, 6, 12
Hence, from the above,
We can conclude that 12 is a Composite number

Question 3.
2
Answer: 2 is a prime number.

Explanation:
Prime number:
The numbers which have exactly 2 factors 1 and itself are called “Prime numbers”
Now,
The factors of 2 are: 1, 2
Hence, from the above,
We can conclude that 2 is a prime number

Question 4.
19
Answer: 19 is a prime number

Explanation:
Prime number:
The numbers which have exactly 2 factors 1 and itself are called “Prime numbers”
Now,
The factors of 19 are: 1, 19
Hence, from the above,
we can conclude that 19 is a prime number

Question5.
45
Answer: 45 is a Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 45 are: 1, 3, 5, 9, 15, 45
Hence, from the above,
we can conclude that 45 is a Composite number

Question 6.
54
Answer 54 is a  Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 54 are: 1, 2. 3. 6, 9, 18, 27, 54
Hence, from the above,
We can conclude that 54 is a Composite number

Apply and Grow: Practice

Tell whether the number is prime or composite. Explain.
Question 7.
35
Answer:35 is a Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 35 are: 1, 5, 7, 35
Hence, from the above,
We can conclude that 35 is a Composite number

Question 8.
5
Answer: 5 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are called “prime numbers”
Now,
The factors of 5 are: 1, 5
Hence, from the above,
we can conclude that 5 is a prime number

Question 9.
23
Answer: 23 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are called ” Prime numbers”
Now,
The factors of 23 are: 1, 23
Hence, from the above,
We can conclude that 23 is a prime number

Question 10.
40
Answer: 40 is a Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 40 are: 1, 2, 4, 5, 8, 10, 20, 40
Hence, from the above,
We can conclude that 40 is a Composite number

Question 11.
41
Answer: 41 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are called “Prime numbers”
Now,
The factors of 41 are: 1, 41
Hence, from the above,
we can conclude that 41 is a prime number

Question 12.
81
Answer: 81 is a Composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are called “Composite numbers”
Now,
The factors of 81 are: 1, 3, 9, 27, 81
hence, from the above,
we can conclude that 81 is a Composite number

Question 13.
Structure
To create a list of the prime numbers that are less than 100, do the following.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 3

  • Place a square around 1. It is neither prime nor composite.
  • Circle 2 and cross out all other multiples of 2.
  • Circle 3 and cross out all other multiples of 3.
  • Circle 5 and cross out all other multiples of 5.
  • Circle the next number that is not crossed out. This number is prime. Cross out all other multiples of this number.
  • Continue until every number is either circled or crossed out.

What are the prime numbers that are less than 100? Explain why these numbers not were crossed out on the chart.
Answer:
The prime numbers below 100 are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 73, 79, 83, 87, 89, 93, and 97

Think and Grow: Modeling Real Life

Example
A museum volunteer has 76 shark teeth to display. Can the volunteer arrange the teeth into a rectangular array with more than 1 row and more than 1 tooth in each row? Explain.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 4
Use divisibility rules to determine whether 76 is prime or composite.
76 is even, so it is divisible by 2.
76 has factors in addition to 1 and itself.
So, 76 is the Composite number.
So,
The volunteer will arrange the teeth into a rectangular array with more than 1 row and more than 1 tooth in each row.
Show and Grow

Question 14.
A teacher has 29 students in class. Can the teacher separate the students into equal groups? Explain.
Answer: No, the teacher can’t separate the students into equal groups.

Explanation:
Given that a teacher has 29 students in the class
Now,
Let find whether 29 is Prime or Composite
Now,
Factors of 29 are: 1, 29
Hence, from the above factors,
We can conclude that 29 is a prime number
Hence,
The teacher can’t divide 29 students into equal groups.

Question 15.
A band instructor wants to have several ways to organize band members into rectangular arrays on the field for a performance.Should the instructor have 89 members or 99 members on the field? Explain.
Answer: The Instructor should have 99 members on the field so that he can arrange the band members into rectangular arrays.

Explanation:
Given that a band instructor wants to organize band members into rectangular arrays on the field for a performance.
It is also given that the instructor wants to arrange into an array of whether 89 members or 99 members
Now,
Factors of 89 are: 1, 89
Factors of 99 are: 1, 3, 9, 11, 33, 99
Hence, from the above,
Since the 99 members can be arranged into different arrays,
We can conclude that the instructor can arrange the participants into an array of 99 members.

Question 16.
DIG DEEPER!
A paramedic is arranging bandages into 4 bins. An equal number of bandages are in each bin. Did the paramedic arrange a prime number or a composite number of bandages? Explain.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 5
Answer: The paramedic has to arrange a composite number of bandages.

Explanation:
Gien that a paramedic is arranging bandages into 4 bins.
It is also given that there is an equal number of bandages in each bin.
Now,
Given there are 4 bins and 4 is a Composite number
So, 4 can divide only a Composite number but not a prime number.
Prime numbers:
The numbers which have exactly only 2 factors 1 and itself are “Prime numbers”
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Hence, from the above,
We can conclude that the paramedic has to arrange a Composite number of bandages.

Identify Prime and Composite Numbers Homework & Practice 6.4

Tell whether the number is prime or composite. Explain.
Question 1.
3
Answer: 3 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 3 are: 1, 3
Hence, from the above,
We can conclude that 3 is a prime number

Question 2.
27
Answer: 27 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 27 are: 1, 3, 9, 27
Hence, from the above,
We can conclude that 27 is a composite number

Question 3.
46
Answer: 46 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 46 are: 1, 2, 23, 46
Hence, from the above,
We can conclude that 46 is a composite number

Question 4.
17
Answer: 17 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 17 are: 1, 17
Hence, from the above,
We can conclude that 17 is a prime number

Question 5.
53
Answer: 53 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Composite numbers”
Now,
The factors of 53 are: 1, 53
Hence, from the above,
we can conclude that 53 is a prime number

Question 6.
63
Answer: 63 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 63 are: 1, 3, 7, 9, 21, 63
Hence, from the above,
We can conclude that 63 is a composite number

Question 7.
29
Answer: 29 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 29 are: 1, 29
Hence, from the above,
We can conclude that 29 is a prime number

Question 8.
31
Answer: 31 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 31 are: 1, 31
Hence, from the above,
We can conclude that 31 is a prime number

Question 9.
75
Answer: 75 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 75 are: 1, 3, 5, 15, 25, 75
Hence, from the above,
We can conclude that 75 is a composite number

Question 10.
DIG DEEPER!
Can a number be both prime and composite? Explain.
Answer: No, a number can’t be both prime and composite

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Hence, from the number of factors,
We can say a number can’t be both prime and composite at the same time

Question 11.
Logic
Your friend is thinking of a prime number between 60 and 80. The tens digit is one less than the ones digit. What is the number?
Answer: The number is 67

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
So,
The prime numbers between 60 and 80 are: 61, 67, 73, 79
It is also given that the tens digit is one less than the ones digit
So,
Tens position value – 1 = ones position value
Hence, from the above,
We can conclude that 67 is the number.

Number Sense
Write true or false for the statement. If false, provide an example to support your answer.
Question 12.
All odd numbers are prime. _______
Answer: False

Explanation:
Given that all odd numbers are prime.
Prime numbers:
The number of factors which have exactly 2 factors 1 and itself is “Prime numbers”
So, let take the off numbers from 1 to 10
The odd numbers from 1 to 10 are: 1, 3, 5, 7, 9
So, from 1 to 10,
The prime numbers are: 3, 5, 7
So, from the above
9 is an odd number but it is not prime.
Hence, from the above,
We can conclude that all odd numbers are not prime

Question 13.
All even numbers, except 2, are composite. _______
Answer: True

Explanation:
Given that all even numbers except 2 are composite numbers
Now,
The even numbers from 1 to 0 are: 2, 4, 6, 8
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
So,
The composite numbers from 1 to 10 are: 4, 6, 8
Note: 2 is an even prime number
Hence, from the above,
WE can conclude that all even numbers except  are composite numbers
Question 14.
A composite number cannot have exactly three factors. _______
Answer: True

Explanation:
Given that a composite number has exactly 3 factors
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Let the number be 63
Now,
The factors of 63 are: 1, 3, 7, 9, 21, 63
Hence, from the above,
We can conclude that a composite number don’t have exactly 3 factors

Question 15.
Modeling Real Life
There are 43 students trying out for a basketball team. Can the coach separate the students into equal groups? Explain.
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 6
Answer: No, the coach can’t separate the students into equal groups

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 43 are: 1, 43
Hence, from the above,
We can conclude that the coach can’t separate the students into equal groups since 43 is a prime number

Question 16.
Modeling Real Life
Which planet not does have a prime number of rings?
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 7
Answer: Saturn does not have a prime number of rings.

Explanation:
Given that,
1 full circle = 2 rings
So,
1 half circle = 1 ring
Big Ideas Math Solutions Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.4 7
So, from the above table,
The number of rings of Jupiter is: 3
The number of rings of Saturn is: 9
The number of rings of Uranus is: 13
The number of rings of Neptune is: 5
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Hence, from the above,
We can conclude that Saturn does not have a prime number of rings ( Because 9 is a composite number )

Review & Refresh

Use properties to find the product. Explain your reasoning
Question 17.
4 × 9 × 25
Answer: 4 × 9 × 25 = 900

Explanation:
Using the Distributive Property of multiplication,
4 × 9 × 25 = 4 × 9 × ( 20 + 5 )
= 36 × ( 20 + 5 )
= ( 36 × 20 ) + ( 36 × 5 )
= 720 + 180
= 900
Hence, 4 × 9 × 25 = 900

Question 18.
405 × 3
Answer: 403 × 3 = 1,215

Explanation:
Using the Distributive Property of Multiplication,
405 × 3 = ( 400 + 5 ) × 3
= ( 400 × 3 ) + ( 5 × 3 )
= 1,200 + 15
= 1,215
Hence, 405 × 3 = 1,215

Question 19.
698 × 7
Answer: 698 × 7 = 4,886

Explanation:
Using the Distributive Property of Multiplication,
698 × 7 = ( 600 + 90 + 8 ) × 7
= ( 600 × 7 ) + ( 90 × 7 ) + ( 8 × 7 )
= 4,200 + 630 + 56
= 4,886
Hence, 698 × 7 = 4,886

Lesson 6.5 Number Patterns

Explore and Grow

Shade every third square in the table.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.5 1
Write the shaded numbers. What patterns do you see?

What other patterns do you see in the table?

Answer:
The shaded numbers are:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60
From the shaded numbers, we can see that each third square is a multiple of 3
The other patterns we can observe in the given table is:
a) If we first shaded the second square and then shaded each second square, then we get the multiples of 2
b) The same pattern will have to be applied for the fourth square
There will also be other patterns by shading 5th square, 6th square, etc.

Structure
Circle every fourth square in the table. Write the circled numbers. What patterns do you see?
Answer:
The circled numbers are:
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60
From the circled numbers of every fourth square, we can see that every fourth square is a multiple of 4.

Think and Grow: Create Number Patterns

A rule tells how numbers or shapes in a pattern are related.
Example
Use the rule “Add 3.” to create a number pattern. The first number in the pattern is 3. Then describe another feature of the pattern.
Create a pattern.

So,
The numbers in the pattern are multiples of 3.
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.5 3

Example
Use the rule “Multiply by 2.” to create a number pattern. The first number in the pattern is 10. Then describe another feature of the pattern.
Create a pattern.

So,
The one’s digit of each number in the pattern is 0.

Show and Grow

Write the first six numbers in the pattern. Then describe another feature of the pattern.
Question 1.
Rule: Add 5.
First number: 1
1, ____, _____, _____, _____, _____
Answer: The first 6 numbers are: 1, 6, 11, 16, 21 and 26

Explanation:
For the formation of the pattern,
The given rules are:
Rule 1 : Add 5
Rule 2: Add 5
Hence,
The given pattern is

Question 2.
Rule: Multiply by 3.
First number: 3
3, _____, _____, ____, _____, _____
Answer: The first 6 numbers are: 3, 9, 27, 81, 243, 729

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Multiply by 3
Rule 2: First number: 3
Hence,
The given pattern is

Question 3.
Rule: Subtract 2.
First number: 20
Answer: The first 6 numbers are: 20, 18, 16, 14, 12, 10

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Subtract 20
Rule 2: First number: 20
Hence,
The given pattern is:

Question 4.
Rule: Divide by 2.
First number: 256
Answer: The first 6 numbers are: 256, 128, 64, 32, 16, 8

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Divide by 2
Rule 2: First number: 256
Hence,
The given pattern is:

Apply and Grow: Practice

Write the first six numbers in the pattern. Then describe another feature of the pattern.
Question 5.
Rule: Add 11.
First number: 11
Answer: The first 6 numbers are: 11, 22, 33, 44, 55, 66

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Add 11
First number: 11
Hence,
The given pattern is:

Question 6.
Rule: Multiply by 4.
First number: 4
Answer: The first 6 numbers are: 4, 16, 64, 256, 1024, 4096

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Multiply by 4
First number: 4
Hence,
The given pattern is

Question 7.
Rule: Subtract 3.
First number: 21
Answer: The first 6 numbers are: 21, 18, 15, 12, 9, 6

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 3
First number: 21
Hence,
The given pattern is:

Question 8.
Rule: Divide by 3.
First number: 729
Answer: The first 6 numbers are: 729, 243, 81, 27, 9, 3

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Divide by 3
First number: 729
Hence,
The given pattern is

Question 9.
Rule: Add 9.
First number: 8
Answer: The first  numbers are: 8, 17, 26, 35, 44, 53

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Add 9
First number: 8
Hence,
The given pattern is:

Question 10.
Rule: Multiply by 5.
First number: 5
Answer: The first 6 numbers are: 5, 25, 125, 625, 3125, 15,625

Explanation:
For the formation of the pattern,
the given rules are:
Rule 1: Multiply by 5
First number: 5
Hence,
The given pattern is:

Open-Ended
Use the rule to generate a pattern of four numbers.
Question 11.
Rule: Multiply by 2.
Answer:
Let the first number be 2.
Hence,
The pattern of four numbers is: 2, 4, 8, 16

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Multiply by 2
Let the first number be: 2
Hence,
The obtained pattern will be:

Question 12.
Rule: Subtract 9.
Answer:
Let the first number be 36
Hence,
The pattern of four numbers is: 36, 27, 18, 9

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 9
Let the first number be 36
Hence,
The obtained pattern will be:

Question 13.
Rule: Divide by 4.
Answer:
Let the first number be 16
Hence,
The pattern of 4 numbers are: 16, 12, 8, 4

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Divide by 4
Let the first number be 16
Hence,
The obtained pattern will be:

Question 14.
Rule: Add 7.
Answer:
Let the first number be 7
Hence,
The pattern of the four numbers are: 7, 14, 21, 28

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Add 7
Let the first number be 7
Hence,
The obtained pattern will be:

Question 15.
Patterns
Write a rule for the pattern below. Then write a different pattern that follows the same rule.
3, 6, 12, 24, 48
Answer:  The rule for the given pattern is: Multiply by 2

Explanation:
Given numbers are: 3, 6, 12, 24, 48
So, from the given numbers,
We can say that the given pattern follows the “Multiply by 2” rule

Question 16.
Reasoning
What is the missing number in the pattern? Explain.
39, 37, 35, _____, 31, 29
Answer: The missing number in the pattern is: 33

Explanation:
The given numbers are: 39, 37, 35, 31, 29
From the given pattern,
the numbers that are following the rule is “Subtract by 2”
Hence, from the above,
The missing number will be: 35 – 2 = 33

Think and Grow: Modeling Real Life

Example
A presidential election is held every 4 years. There was a presidential election in 2016. How many presidential elections will occur between 2017 and 2030?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.5 5
The rule is to add 4 years to each presidential election year. Start with 2016. Then count the years in the pattern that is between 2017 and 2030.

So,
3 presidential elections will occur between 2017 and 2030.

Show and Grow

Question 17.
The pattern of animals on a Chinese calendar repeats every 12 years. The year 2000 was the year of the dragon. How many times will the year of the dragon occur between 2001 and 2100?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.5 7
Answer: The number of times the dragon will appear between 2001 and 2100 is: 8

Explanation:
Given that the pattern of animals on a Chinese calendar repeats every 12 years
It is also given that the year 2000 was the year of the dragon
Now, between the year 2001 and 2100, there are 99 years
So,
The number of times the dragon will appear = The difference between the years 2001 and 2100 ÷ The number of years the pattern will change
= 99 ÷ 12
Now,
99 ÷ 12 = 8 R 3
Hence, from the above,
We can conclude that the dragon will appear 8 times between the years 2001 and 2021

Question 18.
A robotics team raised $25 the first month of school. Each month of school, the team wants to raise 2 times as much money as the month before. How much money should they raise in the fifth month of school?
Answer: The money should they raise in the fifth month of school is: $400

Explanation:
Given that a robotics team raised $25 for the first month of the school and each month of the school, the team wants to raise 2 times as much money as the month before.
Hence,
The rule followed here is: Multiply by 2
The given first number is: $25
Hence,
The pattern we will obtain is:

Hence, from the above,
We can conclude that the money they should raise in the fifth month is: $400

Question 19.
DIG DEEPER!
You start with 128 pictures on your tablet. You take 6 pictures and delete 3 pictures each day. How many pictures do you have on your tablet after 6 days?
Answer: The pictures you have on your tablet after 6 days is: 110 pictures

Explanation:
Given that you have 128 pictures on your tablet and you take 6 pictures and delete 3 pictures each day.
So,
The number of pictures you have each day = 6 – 3 = 3 pictures
So,
The total number of pictures in 6 days = 6 × 3 = 18 pictures
So,
The total number of pictures you have in 6 days = Total number of pictures – Total number f pictures in 6 days
= 128 – 18
= 110 pictures
Hence, from the above,
We can conclude that there are 110 pictures you have in 6 days.

Number Patterns Numbers Homework & Practice 6.5

Write the first six numbers in the pattern. Then describe another feature of the pattern.
Question 1.
Rule: Subtract 8.
First number: 88
88, ____, ____, ____, _____, _____
Answer:
The first 6 numbers in the given pattern are: 88, 80, 72, 64, 56, 48

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 8
First number: 88
Hence,
The pattern we will obtain is:

Question 2.
Rule: Multiply by 10.
First number: 2
2, _____, _____, _____, ____, ____
Answer:
The first 6 numbers of the given pattern are: 2, 20, 200, 2,000, 20,000, 200,000

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Multiply by 10
First number: 2
Hence,
The pattern we will obtain is:

Question 3.
Rule: Add 9.
First number: 17
Answer:
The first 6 numbers for the given pattern is: 17, 26, 35, 44, 53, 62

Explanation:
For the formation,
the given rules are:
Rule: Add 9
First number: 17
Hence,
The pattern we will obtain is:

Question 4.
Rule: Divide by 2.
First number: 1,600
Answer:
The first 6 numbers of the given pattern are: 1,600, 800, 400, 200, 100, 50

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Divide by 2
First number: 1,600
Hence,
The pattern we will obtain is:

Open-Ended Use the rule to generate a pattern of four numbers.
Question 5.
Rule: Divide by 5.
Answer:
Let the first number be: 625
Hence,
The  four numbers of the given pattern will be: 625, 125, 25, 5

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Divide by 5
Let the first number be: 625
Hence,
The pattern we will obtain is:

Question 6.
Rule: Add 8.
Answer:
Let the first number be 8
Hence,
The four numbers of the given pattern are: 8, 16, 24, 32

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Add 8
Let the first number be 8
Hence,
The pattern we will obtain will be:

Question 7.
Rule: Multiply by 9.
Answer:
Let the first number be 9
Hence,
The four numbers of the pattern will be: 9, 81, 729, 6551

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Multiply 9
Let the first number be 9
Hence,
The pattern we obtain will be:

Question 8.
Rule: Subtract 3.
Answer:
Let the first number be 27
Hence,
The four numbers of the given pattern will be: 27, 24, 21, 18

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 3
Let the first number be 27
Hence,
The pattern we obtain will be:

Question 9.
Structure
List the first ten multiples of 9. What patterns do you notice with the digits in the one’s place? in the tens place?
Does this pattern continue beyond the tenth number in the pattern?
Answer: The first 10 multiples of 9 are: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90

Explanation:
The first 10 multiples of 9 are: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90
So,
from the above 10 multiples of 9,
The pattern we can observe in the one’s place is: Decreasing of numbers from 9 to 0 i.e., 9, 8, 7, ………..0
The pattern we can observe in the ten’s place is: Increasing of numbers from 0 to 9 i.e., 0, 1, 2 …………..9
The above 2 patterns will continue beyond the first 10 multiples of 9
Hence, from the above,
We can conclude that the patterns we observed are:
The pattern we can observe in the one’s place is: Decreasing of numbers from 9 to 0 i.e., 9, 8, 7, ………..0
The pattern we can observe in the ten’s place is: Increasing of numbers from 0 to 9 i.e., 0, 1, 2 …………..9

Question 10.
Modeling Real Life
It takes the moon about 28 days to orbit Earth. How many times will the moon orbit Earth in 1 year?
Big Ideas Math Answer Key Grade 4 Chapter 6 Factors, Multiples, and Patterns 6.5 8
Answer: The moon will orbit the earth 10,220 times in 1 year

Explanation:
Given that it takes the moon about 28 days to orbit the earth.
We know that,
1 year = 365 days
So,
The number of times the moon will orbit around the earth in 1 year = 365 × 28
Now,
By using the partial products method,
365 × 28  = ( 300 + 65 ) ×  ( 20 + 8 )
= ( 300 ×  20 ) + ( 300 ×  8 ) + ( 65 ×  20 ) + ( 65 ×  8 )
= 6,000 + 2,400 + 1,300 + 520
= 10,220 times
Hence, from the above,
We can conclude that the moon will orbit around the Earth 10,220 times

Question 11.
DIG DEEPER!
In each level of a video game, you can earn up to 10 points and lose up to 3 points. Your friend earns 9 points in the first level. If he earns and loses the maximum number of points at each level, how many total points will he have after level 6?
Answer: The total points your friend will have is: 44 points

Explanation:
Given that in each level of a video game, you can earn up to 10 points and lose up to 3 points
So,
The maximum number of points you can get = 10 – 3 = 7 points
It is also given that your friend earns 9 points in the first level
So,
The number of points he will have at level 6 = The number of points he has at the first level + 5 × ( The maximum number of points he can get )
= 9 + ( 5 ×  7 )
= 9 + 35
= 44 points
Hence, from the above,
We can conclude that he will have 44 points at the sixth level.

Review & Refresh

Find the product.
Question 12.
14 × 23 = _____
Answer: 14 ×  23 = 322

Explanation:
By using the partial products method,
14 ×  23 = ( 10 + 4 ) × ( 20 + 3 )
= ( 10 ×  20 ) + ( 10 ×  3 ) + ( 4 ×  20 ) + ( 4 ×  3 )
= 200 + 30 + 80 + 12
= 322
Hnece, 14 × 23 = 322

Question 13.
48 × 60 = _____
Answer: 48 × 60 = 2,880

Explanation:
By using the Distributive Property of Multiplication,
48 ×  60 = ( 40 + 8 ) × 60
= ( 40 ×  60 ) + ( 8 ×  60 )
= 2,400 + 480
= 2,880
Hence, 48 × 60 = 2,880

Question 14.
55 × 31 = _____
Answer: 55 ×  31 = 1,705

Explanation:
By using the partial products method,
55 × 31 = ( 50 + 5 ) ×  ( 30 + 1 )
= ( 50 ×  30 ) + ( 50 ×  1 ) + ( 5 ×  30 ) + ( 5 ×  1 )
= 1,500 + 50 + 150 + 5
= 1,705
Hence, 55 ×  31 = 1,705

Lesson 6.6 Shape Patterns

Explore and Grow

Create a rule using 3 different shapes. Draw the first six shapes in the pattern.

What is the next shape in the pattern?

What is the 9th shape in the pattern? Explain.

What is the 99th shape? 1,000th shape? Explain?

Answer: 
From the above 3 shapes,
The rule we can create is: Add 1
So,
We can say the above pattern will repeat after every 3 shapes.
So,
The 9th shape will be: Pentagon
The 99th shape will be: 99 / 3  =  33 R 0
So, The 99th shape will be: Pentagon
The 100th shape will be: Triangle (Because the remainder will be 1 i.e., the shapes will completely repeat 99 times and for the 100th time, it will start from 1st shape)

Structure
You want to show the first 40 shapes in the pattern above. Without modeling, how many of each shape do you think you will need?
Answer:
The number of times each shape will appear in the first 40 shapes is:
Triangle: 14 times
Square: 13 times
Pentagon: 13 times

Explanation:
In the above pattern, the shapes are: Triangle, Square, Pentagon
The rule we obtained by using these 3 shapes is: Add 1
So,
The pattern for the first 40 shapes will be: 40 ÷ 3
Now,
By using the Distributive Property of Division,
40 ÷ 3 = ( 36 + 3 ) ÷ 3
= ( 36 ÷ 3 ) + ( 3 ÷ 3 )
= 12 + 1
= 13 R 1
Hence, the 3 shapes will appear 39 times
So,
The number of times each shape will appear = 13 times
Hence, from the above,
We can conclude that the number of times the shape will appear is:
Triangle: 14 times ( 13 + 1. This 1 is because 40th time, the triangle will repeat again )
Square: 13 times
Pentagon: 13 times

Think and Grow: Create Shape Patterns

Example
Create a shape pattern by repeating the rule “triangle, hexagon, square, rhombus.”What is the 42nd shape in the pattern?
Create a pattern.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 1
42 ÷ 4 is 10 R2, so when the pattern repeats 10 times, the 40th shape is a rhombus So, the 41st shape is a Triangle and the 42nd shape is a hexagon.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 2
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 3
Figure 1 has 1 column of 4 dots, so it has 1 × 4 = 4 dots.
Figure 2 has 2 columns of 4 dots, so it has 2 × 4 = 8 dots.
Figure 3 has 3 columns of 4 dots, so it has 3 × 4 = 12 dots.
So,
The 25th figure has 1 column of 4 dots, ( Because the 3 figures will be repeated 24 times and the first figure will appear again 25th time)
So, it has 1 × 4 =4 dots.

Show and Grow

Question 1.
Extend the pattern of shapes by repeating the rule “square, trapezoid, triangle, hexagon, triangle.”What is the 108th shape in the pattern?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 4
Answer: The 108th shape in the pattern will be: Triangle

Explanation:
The given pattern is: Square, trapezoid, triangle, hexagon, triangle
So, there is a total of 5 shapes.
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
108 ÷ 5 = ( 100 + 5 ) ÷ 5
= ( 100 ÷ 5 ) + ( 5 ÷ 5 )
= 20 + 1
= 21 R 3
Hence, from the above,
We can conclude that the 108th shape will be the triangle.

Question 2.
Describe the dot pattern. How many dots are in the 76th figure?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 5
Answer: The number of dots in the 76th figure is: 3 dots

Explanation:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 5
From the above pattern,
In figure 1, the number of dots = 1 × 3 = 3 dots
In figure 2, the number of dots = 2 × 3 =  dots
In figure 3, the number of dots = 3 × 3 = 9 dots
So,
The total number of patterns is: 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
76 ÷ 3 = ( 66 +9 ) ÷ 3
= ( 66 ÷ 3 ) + ( 9 ÷ 3 )
= 22 + 3
= 25 R 1
Hence, from the above,
We can conclude that there are 3 dots in the 76th figure.

Apply and Grow: Practice
Question 3.
Extend the pattern of shapes by repeating the rule “oval, triangle.”What is the 55th shape?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 6
Answer: The 55th shape is: Oval

Explanation:
The given pattern of shapes is: Oval, Triangle
So,
The total number of patterns is: 2
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
55 ÷ 2 = ( 50 + 4 ) ÷ 2
= ( 50 ÷ 2 ) + ( 4 ÷ 2 )
= 25 + 2
= 27 R 1
Hence, from the above,
We can conclude that the 55th shape is: Oval

Question 4.
Extend the pattern of symbols by repeating the rule “add, subtract, multiply, divide.”What is the 103rd symbol?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 7
Answer: The 103rd symbol is: Multiply

Explanation:
The given patterns are: Add, Subtract, Multiply, Divide
So,
The total number of patterns is: 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
103 ÷ 4 = ( 80 + 20 ) ÷ 4
= ( 80 ÷ 4 ) + ( 20 ÷ 4 )
= 20 + 5
= 25 R 3
Hence, from the above,
We can conclude that the 103rd shape is: Multiply

Question 5.
Describe the pattern. How many squares are in the 24th figure?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 8
Answer: The number of squares in the 24th figure is: 4 squares

Explanation:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 8
In figure 1, the number of squares is: 2
In figure 2, the number of squares is: 3
In figure 3, the number of squares is: 4
So,
Total number of figures = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
24 ÷ 3 = ( 21 + 3 ) ÷ 3
= ( 21 ÷ 3 ) + ( 3 ÷ 3 )
= 7 + 1
= 8 R 0
Hence, from the above,
We can conclude that  in the 24th figure, the number of squares is: 4

Question 6.
Describe the pattern of the small triangles. How many small triangles are in the 10th figure?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 9
Answer: The small triangles in the 10th figure is: 1

Explanation:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 9
From the given figure,
In fig 1, the number of triangles is: 1
In fig 2, the number of triangles is: 2
In fig 3, the number of triangles is: 4
So,
Total number of figures = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
10 ÷ 3 = ( 3 + 6 ) ÷ 9
= ( 3 ÷ 3 ) + ( 6 ÷ 3 )
= 1 + 2
= 3 R 1
Hence, from the above,
We can conclude that the 10th figure has 1 triangle

Question 7.
Structure
Make a shape pattern that uses twice as many squares as triangles.
Answer:

Question 8.
Number Sense
Which shape patterns have a heart as the 12th shape?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 10
Answer:
Let the patterns be named as A), B), C) and D)
So,
The shape patterns that have a heart as the 12th shape is: A), B) and D)

Explanation:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 10
Let the patterns be named as A), B), C) and D)
A) In pattern A,
The total number of figures = 2
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
12 ÷ 2 = 6
Hence, A) will have a heart as the 12th shape
B) In pattern B,
The total number of figures = 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
12 ÷ 4 = 3
Hence, B) will have a heart as the 12th shape
C) In pattern C,
The total number of figures = 2
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
12 ÷ 2 = 6
But, the 12th shape in C) will be a circle
D) In pattern D,
The total number of figures = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
12 ÷ 3 = 4
Hence, C) will have a heart as the 12th shape

Think and Grow: Modeling Real Life

Example
You make a necklace with a cube, hexagon, and star beads. You string the beads in a pattern. You use the rule “cube, star, cube, hexagon.”It takes 64 beads to complete the necklace. How many times do you repeat the pattern?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 11
Divide the number of beads it takes to complete the necklace by the number of beads in the rule. There are 4 beads in the rule.
So,
4√64 = 64 ÷ 4
By using the Distributive Property of division,
64 ÷ 4 = ( 60 + 4 ) ÷ 4
= ( 60 ÷ 4 ) + ( 4 ÷ 4 )
= 15 + 1
= 16
Hence,
You repeat the pattern 16 times

Show and Grow

Question 9.
The path on a board game uses the rule “red, green, pink, yellow, blue.”There are 55 spaces on the game board. How many times does the pattern repeat?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 12
Answer: The number of times the pattern will repeat is: 11 times

Explanation:
Given that the path on a board game uses the rule ” red, green, pink, yellow, blue ”
It is also given that there are 55 spaces on the game board
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the Distributive Property of division,
55 ÷ 5 = ( 50 + 5 ) ÷ 5
= ( 50 ÷ 5 ) + ( 5 ÷ 5 )
= 10 + 1
= 11
Hence, from the above,
We can conclude that the number of times the patterns repeat is: 11 times

Question 10.
You make a walkway in a garden using different-shaped stepping stones. You use the rule “square, circle, square, hexagon.”You use 24 square stepping stones. How many circle and hexagon stepping stones do you use altogether? How many stones do you use in all?
Answer:
The Total number of stones used are: 24
The number of  circle and hexagon stepping stones use are: 12

Explanation:
Given that there is a walkway in a garden using different-shaped stepping stones.
The rule used here is: Square, circle, square, hexagon
It is also given that there are 24 stepping stones you used
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the Distributive Property of division,
24 ÷ 4 = ( 20 + 4 ) ÷ 4
= ( 20 ÷ 4 ) + ( 4 ÷ 4 )
= 5 + 1
= 6
So,
The number of stones used each time is: 6 times
So,
The number of  circle and hexagon stepping stones used altogether is: 6 + 6 = 12
Hence, from the above,
We can conclude that circle and hexagon stepping stones you used altogether is: 12

Question 11.
DIG DEEPER!
You make a rectangular picture frame using square tiles. The picture frame is 12 tiles long and 8 tiles wide. You arrange the tiles in a pattern. You use the rule “red, orange, yellow.” How many of each color tile do you use?
Answer: The number of each color tiles do you use is: 32

Explanation:
Given that you make a rectangular picture frame using square tiles and it is also given that the picture frame is 12 tiles long and 8 tiles wide.
So,
The area of a rectangular picture frame = 12 × 8 = 96 square- meters
The rule used is: red, orange, yellow
So,
The total number of colors is: 3
So,
The number of each color tile you used = Area of rectangular picture frame ÷ Total number of colors
= 96 ÷ 3
Now,
By using the Distributive Property of division,
96 ÷ 3 = ( 90 + 6 ) ÷ 3
= ( 90 ÷ 3 ) + ( 6 ÷ 3 )
= 30 + 2
= 32
Hence, from the above,
we can conclude that each number of color tile used is: 32

Shape Patterns Numbers Homework & Practice 6.6

Question 1.
Extend the pattern of shapes by repeating the rule “up, right, down, left.”What is the 48th shape in the pattern?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 13
Answer: The 48th shape in the pattern is: Left

Explanation:
Given pattern is:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 13
The rule for the given pattern is: up, right, down, left
So,
The total number of patterns is: 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
48 ÷ 4 = ( 40 + 8 ) ÷ 4
= ( 40 ÷ 4 ) + ( 8 ÷ 4 )
= 10 + 2
= 12 R 0
Hence, from the above
We can conclude that the 48th figure in the given pattern is: Left

Question 2.
Extend the pattern of shapes by repeating the rule “small circle, medium circle, large circle.”What is the 86th shape in the pattern?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 14
Answer: The 86th shape in the pattern is: Medium circle

Explanation:
Given pattern is:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 14
The rule for the pattern is: Small circle, Medium circle, large circle
So,
The total number of patterns = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
86 ÷ 3 = ( 75 + 9 ) ÷ 3
= ( 75 ÷ 3 ) + ( 9 ÷ 3 )
= 25 + 3
= 28 R 2
Hence, from the above,
We can conclude that the 86th shape in the pattern is: Medium circle

Question 3.
Describe the dot pattern. How many dots are in the 113th figure?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 15
Answer: The number of dots in the 113th figure is: 4 dots

Explanation:
Given pattern is:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 15
So,
In fig 1, the number of dots = 2
In fig 2, the number of dots = 4
In fig 3, the number of dots = 6
So,
The total number of figures = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
113 ÷ 3 = ( 99 + 12 ) ÷ 3
= ( 99 ÷ 3 ) + ( 12 ÷ 3 )
= 33 + 4
= 37 R 2
Hence, from the above,
we can conclude that the number of dots in the 113th figure is: 4 dots

Question 4.
YOU BE THE TEACHER
You and your friend each create a shape pattern with 100 shapes. Your friend says both patterns will have the same number of circles. Is your friend correct? Explain.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 16
Answer: Yes, both patterns will have the same number of circles.

Explanation:
Given patterns are:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 16
The pattern of the friend is: Star, circle
The pattern of you si: Heart, circle, pentagon, circle
It is also given that,
The total number of figures = 100
So,
The total number of figures for your friend = 2
The total number of figures for you = 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So
For your friend,
By using the partial quotients method,
100 ÷ 2 = ( 50 + 50 ) ÷ 2
= ( 50 ÷ 2 ) + ( 50 ÷ 2 )
= 25 + 25
= 50
Hence,
The number of circles = 50
The number of stars = 50
For you,
By using the partial quotients method,
100 ÷ 4 = ( 80 + 20 ) ÷ 4
= ( 80 ÷ 4 ) + ( 20 ÷ 4 )
= 20 + 5
= 25
Hence,
The number of circles altogether = 25 + 25 = 50
Hence, from the above,
We can conclude that there are equal number of circles in both the patterns

Question 5.
Structure
Draw the missing figure in the pattern. Explain the pattern.
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 17
Answer:

Question 6.
Reasoning
Newton uses the rule “bone, bone, paw print” to make a shape pattern. He wants the pattern to repeat 8 times. How many bones will be in Newton’s pattern?
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 18
Answer: The number of bones in Newton’s pattern is: 16

Explanation:
Given pattern is:
Big Ideas Math Answers 4th Grade Chapter 6 Factors, Multiples, and Patterns 6.6 18
The rule followed in the pattern is: Bone, Bone, pawprint
So,
The total number of figures in the given pattern = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
It is also given that the pattern repeated 8 times.
So,
The total number of figures when the pattern repeated 8 times = 8 × 3 = 24 figures
So,
By using the partial quotients method,
24 ÷ 3 = ( 21 + 3 ) ÷ 3
= ( 21 ÷ 3 ) + ( 3 ÷ 3 )
= 7 + 1
= 8
So,
The number of each figure in a pattern = 8
From the pattern, we can say there are 2 bones
So,
The total number of bones when the pattern repeated 8 times = 2 × 8 = 16
Hence, from the above,
We can conclude that there are 16 bones in the pattern when the pattern repeated 8 times

Question 7.
Modeling Real Life
The black keys on a piano follow the pattern “two black keys, three black keys.” There are 36 black keys on a standard piano. How many times does this entire pattern repeat?
Answer: The entire pattern repeat 12 times

Explanation:
Given that the black keys on a pattern follow the pattern
The given pattern is: two black keys, three black keys
So,
The total number of patterns = 2
It is also given that there are 36 black keys on a standard piano.
So,
The total number of black keys on a piano = 36
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
36 ÷ 2 = ( 30 + 6 ) ÷ 2
= ( 30 ÷ 2 ) + ( 6 ÷ 2 )
= 15 + 3
= 18
Hence, from the above,
We can conclude that the entire pattern will repeat 18 times.

Review & Refresh

Find the quotient.
Question 8.
30 ÷ 5 = _____
Answer: 30 ÷ 5 = 6

Explanation:
By using the partial products method,
30 ÷ 5 = ( 25 + 5 ) ÷ 5
= ( 25 ÷ 5 ) + ( 5 ÷ 5 )
= 5 + 1
= 6
Hence, 30 ÷ 5 = 6

Question 9.
360 ÷ 9 = ______
Answer: 360 ÷ 9 = 40

Explanation:
By using the partial quotients method,
360 ÷ 9 = ( 270 + 90 ) ÷ 9
= ( 270 ÷ 9 ) + ( 90 ÷ 9 )
= 30 + 10
= 40
Hence, 360 ÷ 9 = 40

Question 10.
6,400 ÷ 8 = _____
Answer: 6,400 ÷ 8 = 800

Explanation:
By using the place -value method,
6,400 ÷ 8 = 64 hundreds ÷ 8
= 8 hundred
= 8 × 100
= 800
Hence, 6,400 ÷ 8 = 800

Question 11.
140 ÷ 2 = _____
Answer: 140 ÷ 2 = 70

Explanation:
By using the place-value method,
140 ÷ 2 = 14 tens ÷ 2
= 7 tens
= 7 × 10
= 70
Hence, 140 ÷ 2 = 70

Question 12.
4,200 ÷ 7 = _____
Answer: 4,200 ÷ 7 = 600

Explanation:
By using the place-value method,
4,200 ÷ 7 = 42 hundreds ÷ 7
= 6 hundred
= 6 × 100
= 600
Hence, 4,200 ÷ 7 = 600

Question 13.
40 ÷ 2 = _____
Answer: 40 ÷ 2 = 20

Explanation:
By using the place-value method,
40 ÷ 2 = 4 tens ÷ 2
= 2 tens
= 2 × 10
= 20
Hence, 40 ÷ 2 = 20

Factors, Multiples, and Patterns Performance Task

You play basketball in a youth basketball program.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 1
Question 1.
There are 72 players in the program. Each team needs an equal number of players and must have at least 5 players. What are two different ways the teams can be made?
Answer: The different ways the teams can be made and to have at least 5 members are: 8 × 9 and 9 × 8

Explanation:
Given that there are 72 players in the program and each team needs an equal number of players.
It is also given that each team must have at least 5 players.
Now,
To find the different ways the teams can be made, we have to find the factors of 72
Now,
The factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
Now, to make an equal number of players and to have at least 5 players,
The different ways the teams can be made is: 8 × 9, 9 × 8
Hence, from the above,
We can conclude that the 2 different ways the teams can be made are: 8 × 9 and 9 × 8

Question 2.
The width of a basketball court is 42 feet and the length is 74 feet. You run around the perimeter of the court 4 times to warm up. How many feet do you run?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 2
Answer: The number of feet you run is: 464 feet

Explanation:
Given that the width of a basketball court is 42 feet high and the length is 74 feet
So,
The perimeter of the basketball court = 42 + 74 = 116 feet
It is also given that you run around the perimeter of the basketball court 4 times to warm up.
So,
The number of feet you run to warm up = The perimeter of the basketball court × 4
= 116 × 4
Now,
By using the partial products method,
116 × 4 = ( 100 + 16 ) × 4
= ( 100 × 4 ) + ( 16 × 4 )
= 400 + 64
= 464 feet
Hence, from the above,
We can conclude that you will run up 464 feet to warm up your body.

Question 3.
You and your friend are on the same team. You played your first game last week.
a. Your team scored 4 more points than the other team. The total number of points scored by both teams was 58. How many points did your team score?
b. You and your friend scored the same number of points. You made 2-point shots and your friend made 3-point shots. What could be the greatest number of points you and your friend each scored?
Answer:

Question 4.
Your team uses the pattern below to decide which jersey color to wear to each game. Which color jersey will your team wear on the 20th game?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 3
Answer: The color of jersey your team will wear on the 20th game is: Game 4

Explanation:
Given that your team uses the following pattern:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 3
From the above pattern,
The total number of shirts is: 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
20 ÷ 4 = 5 R 0
Hence, from the above,
We can conclude that the color of the shirt your team will wear on the 20th game is: Game 4

Factors, Multiples, and Patterns Activity

Multiple Lineup
Directions:
1. Players take turns rolling a die.
2. On your turn, place a counter on a multiple of the number of your roll. If there is not a multiple of the number of your roll, you lose your turn.
3. The first player to create a line of 5 in a row, horizontally, vertically, or diagonally, wins!
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns 4
Answer:

Factors, Multiples, and Patterns Chapter Practice

6.1 Understand Factors

Question 1.
Use the rectangles to find the factor pairs for 6.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 1
Answer: The factor pairs of 6 are: 1 and 6, 2 and 3

Explanation:

The factor pairs are nothing but the side lengths of a rectangle and the area of a rectangle gives the factor
Hence,
The factor pairs of 6 are: 1 and 6, 2 and 3

Question 2.
Draw rectangles to find the factor pairs for 12.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 2
Answer: The factor pairs of 12 are: 1 and 12, 2 and 6, 3 and 4

Explanation:

The factor pairs are nothing but the side lengths of a rectangle and the area of a rectangle gives the factor
Hence,
The factor pairs of 12 are: 1 and 12, 2 and 6, 3 and 4

Find the factor pairs for the number.
Question 3.
17
Answer: The factor pairs of 17 are: 1 and 17

Explanation:
Factors are the numbers that divide the original completely.
Hence,
The factor pairs of 17 are: 1 × 17

Question 4.
10
Answer: The factor pairs of 10 are: 1 and 10, 2 and 5

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 10 are: 1 × 10, 2 × 5

Question 5.
21
Answer: The factor pairs of 21 are: 1 and 21, 3 and 7

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 21 are: 1 × 21, 3 × 7

Question 6.
20
Answer: The factor pairs of 20 are: 1 and 20, 2 and 10, 4 and 5

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 20 are: 1 × 20, 2 × 10, 5 × 4

Question 7.
36
Answer: The factor pairs of 36 are: 1 and 36, 2 and 18, 3 and 12, 4 and 9, 6 and 6

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 36 are: 1 × 36, 2 × 18, 3 × 12, 4 × 9, 6 × 6

Question 8.
50
Answer: The factor pairs of 50 are: 1 and 50, 2 and 25, 5 and 10

Explanation:
factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 50 are: 1 × 50, 2 × 25, 5 × 10

6.2 Factors and Divisibility

Find the factor pairs for the number.
Question 9.
16
Answer: The factor pairs of 16 are: 1 and 16, 2 and 8, 4 and 4

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 16 are: 1 × 16, 2 × 8, 4 × 4

Question 10.
24
Answer: The factor pairs of 24 are: 1 and 24, 2 and 12, 3 and 8, 4 and 6

Explanation:
factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 24 are: 1 × 24, 2 × 12, 3 × 8, 4 × 6

Question 11.
56
Answer: The factor pairs of 56 are: 1 and 56, 2 and 28, 4 and 14, 7 and 8

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factor pairs of 56 are: 1 × 56, 2 × 28, 4 × 14, 7 × 8

List the factors of the number.
Question 12.
25
Answer: The factors of 25 are: 1, 5, 25

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factors of 25 are: 1, 5, 25

Question 13.
60
Answer: The factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

Question 14.
72
Answer: The factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Explanation:
Factors are the numbers that divide the original number completely.
Hence,
The factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

Question 15.
Number Sense
Which numbers have 3 as a factor?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 15
Answer: The numbers which have 3 as a factor are: 21, 36, 48, 93

Explanation:
Given numbers are: 56, 21, 3, 48, 93, 71
For the given number to have 3 as a factor, the sum of the digits of the given number must be a multiple of 3
So,
The sum of digits of:
56: 5 + 6 = 11: 1 + 1 = 2
21: 2 + 1 = 3
36: 3 + 6 = 9
48: 4 + 8 = 12: 1 + 2 = 3
93: 9 + 3 = 12: 1 + 2 = 3
71: 7 + 1 = 8
Hence, from the above,
we can conclude that the numbers which have 3 as a factor are: 21, 36, 48, 93

6.3 Relate Factors and Multiples

Question 16.
Is 54 a multiple of 3? Explain.
Answer: 54 is a multiple of 3

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33
To be a multiple of 3, the sum of the digits of the given number should also be a multiple of 3.
So,
54: 5 + 4 = 9 ( Divisible by 3 )
Hence, from the above,
we can conclude that 54 is a multiple of 3

Question 17.
Is 45 a multiple of 7? Explain.
Answer: 45 is not a multiple of 7

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 7 are: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70
Hence, from the above,
we can conclude that 45 is not a multiple of 7

Question 18.
Is 2 a factor of 97? Explain.
Answer: 2 is not a factor of 97

Explanation:
Factors are the numbers that divide the original number completely.
The factors of 97 are: 1, 97
Hence, from the above,
We can conclude that 2 is not a factor of 97

Question 19.
Is 5 a factor of 60? Explain.
Answer: 5 is a factor of 60

Explanation:
Factors are the numbers that divide the original number completely.
The factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Hence, from the above,
We can conclude that 5 is a factor of 60

Tell whether 20 is a multiple or a factor of the number. Write multiple, factor, or both.
Question 20.
60
Answer: 20 is a factor of 60

Explanation:
Factors are the numbers that divide the original number completely.
The factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Hence, from the above,
We can conclude that 20 is a factor of 60

Question 21.
4
Answer: 20 is a multiple of 4

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
The multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
Hence, from the above,
We can conclude that 20 is a multiple of 4

Question 22.
20
Answer: 20 is a multiple and factor of 20

Explanation:
Multiples are the numbers that can be divided by another number a certain number of times without any remainder.
Factors are the numbers that divide the original number completely
Now,
Factors of 20 are: 1, 2, 4, 5, 10, 20
Multiples of 20 are: 20, 40, 60, 80, 100
Hence, from the above,
we can conclude that 20 is a multiple and factor of 20

Question 23.
Number Sense
Name two numbers that are each a multiple of both 5 and 2. What do you notice about the two multiples?
Answer: The 2 numbers that are each a multiple of both 5 and 2 are: 10 and 20

Explanation;
Multiples of 2 are: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
So,
From the multiples of both 2 and 5,
The numbers which have common multiples of both 5 and 2 are: 10, 20
The multiples of 2 have the one’s digit as 2 or 4 or 6 or 8 or 0
The multiples of 5 have the one’s digit as 5 or 0

Question 24.
Logic
A quotient is a multiple of 5. The dividend is a multiple of 4. The divisor is a factor of 8. Write one possible equation for the problem.
Answer: The possible equation is:
80 ÷ 8 = 10

Explanation:
Given that,
Quotient: Multiple of 5
Dividend: Multiple of 4
Divisor: Factor of 8
Hence, from the above,
we can conclude that the possible equation for the problem is:
80 ÷ 8 = 10

6.4 Identify Prime and Composite Numbers

Tell whether the number is prime or composite. Explain.
Question 25.
5
Answer: 5 is a prime number

Explanation;
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 5 are: 1, 5
Hence, from the above,
We can conclude that 5 is a prime number

Question 26.
25
Answer: 25 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 25 are: 1, 5, 25
Hence, from the above,
We can conclude that 25 is a composite number

Question 27.
51
Answer: 51 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 51 are: 1, 3, 17, 51
Hence, from the above,
We can conclude that 51 is a composite number

Question 28.
21
Answer: 21 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 21 are: 1, 3, 7, 21
Hence, from the above,
We can conclude that 21 is a composite number

Question 29.
50
Answer: 50 is a composite number

Explanation:
Composite numbers:
The numbers which have more than 2 factors are “Composite numbers”
Now,
The factors of 50 are: 1, 2, 5, 10, 25, 50
Hence, from the above,
We can conclude that 50 is a composite number

Question 30.
83
Answer: 83 is a prime number

Explanation:
Prime numbers:
The numbers which have exactly 2 factors 1 and itself are “Prime numbers”
Now,
The factors of 83 are: 1, 83
Hence, from the above,
We can conclude that 83 is a prime number

Question 31.
Modeling Real Life
A prime number of students have which type of fingerprint?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 31

Answer: A prime number of students have Whorl fingerprint

Explanation:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 31
From the given figure,
Each half-circle = 1 student
The number of fingerprints of loop-type fingerprint: 9
The number of fingerprints of Arch-type fingerprint: 12
The number of fingerprints on Whorl-type fingerprint: 7
Hence, from the above,
We can conclude that the prime number of students has Whorl-type fingerprint

6.5 Number Patterns

Write the first six numbers in the pattern. Then describe another feature of the pattern.
Question 32.
Rule: Subtract 11.
First number: 99
99, ___, _____, _____, _____, _____
Answer:
The first 6 numbers in the given pattern are: 99, 88, 77, 66, 55, 44

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 11
First number: 99
Hence,
The pattern we will obtain is:

Question 33.
Rule: Multiply by 5.
First number: 10
10, _____, _____, ____, _____, _____
Answer:
The first 6 numbers of the given pattern is: 10, 50, 250, 1,250, 6,250, 31,250

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Multiply by 5
First number: 10
Hence,
The pattern we will obtain is:

Question 34.
Rule: Add 8.
First number: 15
Answer:
The first 6 numbers of the given pattern are: 15, 23, 31, 39, 47, 55

Explanation:
For the formation of the pattern,
the rules are:
Rule: Add 8
First number: 15
Hence,
The pattern we will obtain is:

Question 35.
Rule: Divide by 4.
First number: 4,096
Answer:
The first 6 numbers in the given pattern is: 4,096, 1,024, 256, 64, 16, 4

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Divide by  4
First number: 4,096
Hence,
The pattern we will obtain is:

Open-Ended
Use the rule to generate a pattern of four numbers.
Question 36.
Rule: Divide by 2.
Answer:
Let the first number be 16
Hence,
The first 4 numbers of the given pattern are: 16, 8, 4, 2

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Divide by 2
Let the first number be 16
Hence,
The pattern we will obtain is:

Question 37.
Rule: Add 3.
Answer:
Let the first number be 3
Hence,
The first four numbers of the given pattern are: 3, 6, 9, 12

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Add 3
Let the first number be 3
Hence,
The pattern we will obtain is:

Question 38.
Rule: Multiply by10.
Answer:
Let the first number be 10
Hence,
The first  4 numbers of the given pattern are: 10, 100, 1,000, 10,000

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Multiply by 10
Let the first number be 10
Hence,
The pattern we will obtain is:

Question 39.
Rule: Subtract 6.
Answer:
Let the first number be 36
Hence,
The first 4 numbers of the given pattern are: 36, 30, 24, 18

Explanation:
For the formation of the pattern,
the given rules are:
Rule: Subtract 6
Let the first number be 36
Hence,
The pattern we will obtain is:

6.6 Shape Patterns

Question 40.
Extend the pattern of shapes by repeating the rule “trapezoid, circle.” What is the 57th shape in the pattern?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 40
Answer: The 57th shape in the pattern is: Trapezoid

Explanation:
Given pattern is:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 40
The rule given for the pattern is: trapezoid, circle
So,
The total number of figures in the given pattern is: 2
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotient method,
57 ÷ 2 = ( 40 + 16 ) ÷ 2
= ( 40 ÷ 2 ) + ( 16 ÷ 2 )
= 20 + 8
= 28 R 1
Hence, from the above,
we can conclude that the 57th shape in the pattern is: Trapezoid

Question 41.
Extend the pattern of shapes by repeating the rule “top left, top right, bottom right, bottom left.” What is the 102nd shape in the pattern?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 41
Answer: The 102nd shape in the pattern is: Bottom left

Explanation:
The given pattern is:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 41
The rule given for the pattern is: top left, top right, bottom right, bottom left
So,
The total number of figures in the given pattern is: 4
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
102 ÷ 3 = ( 99 + 3 ) ÷ 3
= ( 99 ÷ 3 ) + ( 3 ÷ 3 )
= 33 + 1
= 34 R 0
Hence, from the above,
We can conclude that the 102nd shape in the pattern is: Bottom left

Question 42.
Describe the pattern. How many squares are in the 61st figure?
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 42
Answer: The number of squares in the 61st figure is: 3

Explanation:
The given pattern is:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 42
In figure 1, the total number of squares = 3
In figure 2, the total number of squares = 6
In figure 3, the total number of squares = 9
So,
The total number of figures = 3
So,
for this, when we divide any number by the total number of patterns, the value of the quotient will be a total repetition of the patterns and the remainder will be the counting of the pattern from the 1st figure.
So,
By using the partial quotients method,
61 ÷ 3 = ( 57 + 3 ) ÷ 3
= ( 57 ÷ 3 ) + ( 3 ÷ 3 )
= 19 + 1
= 20 R 1
Hence, from the above,
We can conclude that the number of squares in the  61st figure in the pattern is: 4

Question 43.
Structure
Draw the missing figure in the pattern. Explain the pattern.
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 43
Answer: The missing figure has: 7 squares

Explanation:
The given pattern is:
Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns chp 43
The rule-following in the given pattern is: Add 2
The first number: 1
According to the rule,
The number of squares in the pattern will be like 1, 3, 5, 7, 9

Conclusion:

We hope the details mentioned in the Big Ideas Math Answers Grade 4 Chapter 6 Factors, Multiples, and Patterns are helpful for you to finish your homework in time. Learn the concepts in depth so that you can solve any kind of problem easily. If you have any queries you can post your comments in the below section.

Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations

Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations available here are free of cost. Students can seek homework help and solve the questions covered in the Ch 1 lessons. Also, these solutions of BIM Algebra 1 Ch 1 Answer Book improve their math skills and become math proficient in the future. Choosing the right track during the preparation can change your education life. So, accessing the Big Ideas Math Book Solutions Algebra 1 Ch 1 solving linear equations is a better & fun-learning way for students of high school. Also, it clarifies all your doubts about the concepts of chapter 2 BIM Textbook Solutions.

Big Ideas Math Book Algebra 1 Answer Key Chapter 1 Solving Linear Equations

Get free access to the below available links just by tapping on them and make use of the handy Big Ideas Math Algebra 1 Chapter 1 Solving Linear Equations Solution Key to solve all the questions that appeared in homework, assignments, and yearly exams. Algebra 1 BIM Ch 1 Solving Linear Equations Answer key is explained by the subject experts as per the latest edition of common core standards. So, kids can easily understand the concepts of ch 1 and gain more subject knowledge with the help of the Big Ideas Math Book Solution key of Algebra 1 Chapter 1 Solving Linear Equations.

Solving Linear Equations Maintaining Mathematical Proficiency

Add or subtract.

Question 1.
-5 + (-2)
Answer:
-5 + (-2 ) = -7

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-5 + ( -2 ) = -5 – 2
= – ( 5 + 2 )
= -7
Hence, from the above,
We can conclude that,
-5 + ( -2 ) = -7

Question 2.
0 + (-13)
Answer:
0 + -13 = -13

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
0 + ( -13 ) = 0 – 13
= -13
Hence, from the above,
We can conclude that,
0 + ( -13 ) = -13

Question 3.
-6 + 14
Answer:
-6 + 14 = 8

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-6 + 14 = +14 – 6
= +8
= 8
Hence, from the above,
We can conclude that
-6 +14 = 8

Question 4.
19 – (-13)
Answer:
19 – ( -13 ) = 32

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
19 – ( -13 ) = 10 + 9 + 10 + 3
= 20 + 12
= 32
Hence, from the above,
We can conclude that,
19 – (-13 ) = 32

Question 5.
-1 – 6
Answer:
-1 -6 = -7

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-1 – 6 = – ( 1 + 6 )
= -7
Hence, from the above,
We can conclude that
-1 -6 = -7

Question 6.
– 5 – (-7)
Answer:
-5 – ( -7 ) = 2

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-5 – ( -7 ) = -5 + 7
= 7 – 5
= 2
Hence, from the above,
We can conclude that
-5 – ( -7 ) = 2

Question 7.
17 + 5
Answer:
17 + 5 = 22

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
17 + 5 = 15 + 2 + 5
= 22
Hence, from the above,
We can conclude that
17 + 5 = 22

Question 8.
8 + (-3)
Answer:
8 + ( -3 ) = 5

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
8 + ( -3 ) = 8 – 3
= 5
Hence, from the above,
We can conclude that
8  + ( -3 ) = 5

Question 9.
11 – 15
Answer:
11 – 15 = -4

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
11 – 15 = -15 + 11
= – ( 15 – 11 )
= -4
Hence, from the above,
We can conclude that,
11 – 15 = -4

Multiply or divide.

Question 10.
-3(8)
Answer:
-3(8) = -3 × 8
= -24

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-3(8) = -3 × +8
= -24
Hence, from the above,
We can conclude that
-3 ( 8 ) = -24

Question 11.
-7 • (-9)
Answer:
-7 . ( -9 ) = -7 × +9
= -63

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-7 . ( 9 ) = -7 × +9
= -63
Hence, from the above,
We can conclude that
-7 . ( 9 ) = -63

Question 12.
4 • (-7)
Answer:
4 . ( -7 ) = 4 × ( -7 )
= -28

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
4. (-7 ) = +4 × -7
= -28
Hence, from the above,
We can conclude that
4 . ( -7 ) = -28

Question 13.
-24 ÷ (-6)
Answer:
-24 ÷ ( -6 ) = 4

Explanation:
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-24 ÷ ( -6 ) = + ( 24 ÷ 6 )
= 4
Hence, from the above,
We can conclude that
-24 ÷ ( -6 ) = 4

Question 14.
-16 ÷ 2
Answer:
-16 ÷ 2 = -8

Explanation:
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-16 ÷ 2 = -8
Hence, from the above,
We can conclude that
-16 ÷ 2 = -8

Question 15.
12 ÷ (-3)
Answer:
12 ÷ ( -3 ) = -4

Explanation:
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
12 ÷ ( -3 )
= 12 ÷ -3
= -4
Hence, from the above,
We can conclude that
12 ÷ ( -3 ) = -4

Question 16.
6 • 8
Answer:
6 . 8 = 6 × 8
= 48

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
6 . 8 = 6 × 8
= 48
Hence, from the above,
We can conclude that
6 . 8 = 48

Question 17.
36 ÷ 6
Answer:
36 ÷ 6 = 6

Explanation:
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
36 ÷ 6 = ( 30 + 6 ) ÷ 6
= ( 30 ÷ 6 ) + ( 6 ÷ 6 )
= 5 + 1
= 6
Hence, from the above,
We can conclude that
36 ÷ 6 = 6

Question 18.
-3(-4)
Answer:
-3 ( -4 ) = -3 × -4
= -12

Explanation:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
We know that,
The result of any mathematical operation follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
So,
-3 ( -4 ) = -3 × -4
= +12
Hence, from the above,
We can conclude that
-3 ( – 4 ) = 12

Question 19.
ABSTRACT REASONING
Summarize the rules for
(a) adding integers,
(b) subtracting integers,
(c) multiplying integers, and
(d) dividing integers.
Give an example of each.
Answer:
a) Adding integers:
We know that,
The result of any mathematical operation i.e., Addition or subtraction follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
Example:
Let take the two numbers -2 and 3
So,
The addition of -2 and 3 is:
-2 + 3 = +1
= 1 ( Since the big number has a positive sign )

b) Subtracting integers:
We know that,
The result of any mathematical operation i.e., Addition or subtraction follows the sign of the big number and if the two numbers have the same sign, then the result of that also operation also follows the same sign and if there is no sign before the number, then we can take that number as positive number i.e., +a
Example:
Let take the two numbers -3 and +8
So,
The subtraction of -3 and +8 is:
-3 – ( +8 ) = -3 – 8
= – ( 3 + 8 )
= -11 ( Since both the numbers have a negative sign )

c) Multiplying integers:
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
Example:
Let take the two numbers +8 and -3
So,
The multiplication of +8 and -3 is:
+8 ( -3 ) = 8 × -3
= -24 ( Since + × – = – )

d) Dividing integers:
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
Example:
Let take the two numbers -12 and -2
So,
The division of -12 and -2 is:
-12 ÷ ( -2 ) = -12 ÷ -2
= ( -10 + -2 ) ÷ -2
= ( -10 ÷ -2 ) + ( -2 ÷ -2 )
= 5 + 1
= 6
Hence, from the above,
We can conclude all the rules for the four basic mathematical operations.

Solving Linear Equations Monitoring Progress

Solve the problem and specify the units of measure.

Question 1.
The population of the United States was about 280 million in 2000 and about 310 million in 2010. What was the annual rate of change in population from 2000 to 2010?
Answer:
The annual rate of change in population from 2000 to 2010 is: 30 million

Explanation:
It is given that the population of the United States was about 280 million in 2000 and about 310 million in 2010.
So,
The annual rate of change in population from 2000 to 2010 = ( The population of United States in 2010 ) – ( The population of United States in 2000 )
= 310 – 280
= 30 million
Hence, from the above,
We can conclude that the annual rate of change in population from 2000 to 2010 is: 30 million

Question 2.
You drive 240 miles and use 8 gallons of gasoline. What was your car’s gas mileage (in miles per gallon)?
Answer:
Your car’s gas mileage ( in miles per gallon ) is: 30

Explanation:
It is given that you drive 240 miles and use 8 gallons of gasoline.
So,
The mileage of your car = ( The total number of miles driven by your car ) ÷ ( The number of gallons of gasoline used by your car )
= 240 ÷ 8
= ( 160 + 80 ) ÷ 8
= ( 160 ÷ 8 ) + ( 80 ÷ 8 )
= 20 + 10
= 30 miles
Hence, from the above,
We can conclude that the mileage of your car is: 30 miles per gallon

Question 3.
A bathtub is in the shape of a rectangular prism. Its dimensions are 5 feet by 3 feet by 18 inches. The bathtub is three-fourths full of water and drains at a rate of 1 cubic foot per minute. About how long does it take for all the water to drain?
Answer:
The total time taken for the water to drain is: 2,430 minutes

Explanation:
It is given that a bathtub is in the shape of a rectangular prism. Its dimensions are 5 feet by 3 feet by 18 inches. The bathtub is three-fourths full of water and drains at a rate of 1 cubic foot per minute.
So,
The volume of the rectangular prism = The dimensions of the rectangular prism
= 5 × 3 × 18 × 12
= 3,240 cubic feet
Now,
The volume of the bathtub which is three-fourths full of water = \(\) {3}{4}[\latex] × 3240
= 2,430 cubic feet
It is also given that that the bathtub drains at a rate of 1 cubic foot per minute.
So,
The time taken to drain 2,430 cubic feet of water in minutes = 2,430 × 1
= 2,430 minutes
Hence, from the above,
We can conclude that the time taken for the water to drain from the bathtub at a rate of 1 cubic foot per minute is: 2,430 minutes

Lesson 1.1 Solving Simple Equations

Essential Question
How can you use simple equations to solve real-life problems?

Exploration 1
Measuring Angles

Work with a partner. Use a protractor to measure the angles of each quadrilateral. Copy and complete the table to organize your results. (The notation m∠A denotes the measure of angle A.) How precise are your measurements?

Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 2

EXPLORATION 2
Making a Conjecture

Work with a partner. Use the completed table in Exploration 1 to write a conjecture about the sum of the angle measures of a quadrilateral. Draw three quadrilaterals that are different from those in Exploration 1 and use them to justify your conjecture.
Answer:
The completed table is:

From the above table,
We can say that the sum of all the angle in any quadrilateral is: 360 degrees
So,
From the above table,
The angles in Quadrilateral a is: 60 degrees, 125 degrees, 120 degrees, and 55 degrees
We know that,
The quadrilateral will have n angles based on the shape.
The shape which has more than 3 sides is called a Quadrilateral.
Ex: Rectangle, Square, Pentagon, Hexagon, etc.

From the above quadrilaterals,
We can say that all the sides in each quadrilateral are equal.
So,
The angles in each quadrilateral are also equal.
So,
In a rectangle, there are 4 sides
So,
By measuring, we can observe that each angle of a rectangle is: 90 degrees
Hence,
The sum of all angles in a rectangle = 90 + 90 + 90 + 90 = 360 degrees
In a pentagon, there are 5 sides
By measuring, we can observe that each rectangle of a pentagon
Hence,
The sum of all the angles in a pentagon = = 72+ 72 + 72 + 72 + 72 = 360 degrees
In a Hexagon, there are 6 sides
So,
By measuring, we can observe that each angle of a hexagon is: 60 degrees
Hence,
The sum of all angle is a Hexagon = 60 + 60 + 60 + 60 + 60 + 60 = 360 degrees
Hence, from the above-drawn quadrilaterals,
We can conclude that our conjecture is proven.

EXPLORATION 3
Applying Your Conjecture

Work with a partner. Use the conjecture you wrote in Exploration 2 to write an equation for each quadrilateral. Then solve the equation to find the value of x. Use a protractor to check the reasonableness of your answer.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 3
Answer:
The given figure is:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 3
From Exploration 2, the proven conjecture is:
The sum of all angles in a quadrilateral is: 360 degrees
Now,
In Quadrilateral a.,
By using the above-proven conjecture,
85 + 80 + 100 + x = 360 degrees
265 + x = 360 degrees
x = 360 – 265
= 95 degrees
So,
The angle x is: 95 degrees
In Quadrilateral b.,
By using the above-proven conjecture,
72 + 78 + 60 + x = 360 degrees
210 + x = 360 degrees
x = 360 – 210
= 150 degrees
So,
The angle of x is: 150 degrees
In Quadrilateral c.,
By using the above-proven conjecture,
90 + 90  +30 + x = 360 degrees
210 + x = 360 degrees
x = 360 – 210
= 150 degrees
So,
The angle of x is: 150 degrees

Communicate Your Answer

Question 4.
How can you use simple equations to solve real-life problems?

Question 5.
Draw your own quadrilateral and cut it out. Tear off the four corners of the quadrilateral and rearrange them to affirm the conjecture you wrote in Exploration 2. Explain how this affirms the conjecture.
Answer:
Your Quadrilateral is:

From the above Quadrilateral,
We can observe that the tear-off corners of the quadrilateral are joined and it becomes the triangle.
So,
In the above Quadrilateral, there are two quadrilaterals.
We know that,
The sum of all angles in a triangle is: 180 degrees
So,
The sum of all angles in the two triangles = 180 + 180 = 360 degrees
These two triangles form a quadrilateral.
So,
The sum of all angles in a quadrilateral is: 360 degrees
Hence, from the above,
We can conclude that we can prove Exploration 2’s conjecture by your own example.

1.1 Lesson

Monitoring Progress

Solve the equation. Justify each step. Check your solution.

Question 1.
n + 3 = -7
Answer:
The value of n is: -10

Explanation:
The given equation is:
n + 3 = -7
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
n + 3 = -7
n = -7 – (+3 )
n = -7 – 3
= -10
Hence from the above,
We can conclude that the value of n is: -10

Question 2.
g – \(\frac{1}{3}\) = –\(\frac{2}{3}\)
Answer:
The value of g is: –\(\frac{1}{3}\)

Explanation:
The given equation is:
g – \(\frac{1}{3}\) = –\(\frac{2}{3}\)
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
g – \(\frac{1}{3}\) = –\(\frac{2}{3}\)
g = –\(\frac{2}{3}\) + \(\frac{1}{3}\)
g = \(\frac{-2 + 1}{3}\)
g = \(\frac{-1}{3}\)
g = –\(\frac{1}{3}\)
Hence, fromthe above,
We can conclude that the value of g is: –\(\frac{1}{3}\)

Question 3.
-6.5 = p + 3.9
Answer:
The value of p is: -10.4

Explanation:
The given equation is:
-6.5 = p + 3.9
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-6.5 = p + 3.9
p = -6.5 – 3.9
= – ( 6.5 + 3.9 )
= – 10.4
Hence, from the above,
We can conclude that the value of p is: -10.4

Monitoring Progress

Solve the equation. Justify each step. Check your solution.

Question 4.
\(\frac{y}{3}\) = -6
Answer:
The value of y is: -18

Explanation:
The given equation is:
\(\frac{y}{3}\) = -6
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
\(\frac{y}{3}\) = -6
\(\frac{y}{1}\) × \(\frac{1}{3}\) = -6
\(\frac{y}{1}\) = -6 ÷ \(\frac{1}{3}\)
y = -6 × -3
y = -18
Hence, from the above,
We can conclude that the value of y is: -18

Question 5.
9π = πx
Answer:
The value of x is: 9

Explanation:
The given equation is:
9π = πx
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
9π = πx
9 × π = π × x
x = ( 9 × π ) ÷ π
x = 9
Hence, from the above,
We can conclude that the value of x is: 9

Question 6.
0.05w = 1.4
Answer:
The value of w is: 28

Explanation:
The given equation is:
0.05w = 1.4
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
0.05w = 1.4
0.05 × w = 1.4
\(\frac{5}{100}\) × w = \(\frac{14}{10}\)
w = \(\frac{14}{10}\) ÷ \(\frac{5}{100}\)
w = \(\frac{14}{10}\) × \(\frac{100}{5}\)
w = \(\frac{14 × 100}{10 × 5}\)
w = \(\frac{28}{1}\)
w = 28
Hence, from the above,
We can conclude that the value of w is: 28

Monitoring Progress

Question 7.
Suppose Usain Bolt ran 400 meters at the same average speed that he ran the 200 meters. How long would it take him to run 400 meters? Round your answer to the nearest hundredth of a second.
Answer:
The time it took for him to run 400 meters is: 0.50 seconds

Explanation:
It is given that Usain Bolt ran 400 meters at the same average speed that he ran the 200 meters.
We know that,
Speed = Distance ÷ Time
But, it is given that the average speed is the same.
Hence,
Speed = Constant
So,
Since speed is constant, distance is directly proportional to time.
So,
The time taken by Usain Bolt to run 400 meters = 200 ÷ 400
= ( 2 × 100 ) ÷ ( 4 × 100 )
= 10 ÷ 20
= 0.50 seconds ( 0.5 and 0.50 are the same values Only for the representation purpose, we will add ‘0’ after 5 )
Hence from the above,
We can conclude that the time is taken by Usain Bolt to run 400 meters when rounded-off to the nearest hundredth is: 0.50 seconds

Monitoring Progress

Question 8.
You thought the balance in your checking account was $68. When your bank statement arrives, you realize that you forgot to record a check. The bank statement lists your balance as $26. Write and solve an equation to find the amount of the check that you forgot to record.
Answer:
The amount of the check that you forgot to record is: $42

Explanation:
It is given that you thought the balance in your checking account was $68 and when your bank statement arrives, you realize that you forgot to record a check and the bank statement lists your balance as $26.
Now,
Let the amount you forgot to record be: x
So,
The total balance in your checking account = ( The listed balance ) + ( The amount that you forgot to record a check )
68 = 26 + x
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
68 = 26 + x
x = 68 – 26
x = $42
Hence, from the above,
We can conclude that the amount that forgot to record is: $42

Solving Simple Equations 1.1 Exercises

Monitoring Progress and Modeling with Mathematics

In Exercises 5–14, solve the equation. Justify each step. Check your solution.

Question 1.
VOCABULARY Which of the operations +, -, ×, and ÷ are inverses of each other?
Answer:
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Hence, from the above,
We can conclude that,
+ is inverse of –  and vice-versa
× is inverse of ÷ and vice-versa

Question 2.
VOCABULARY Are the equations -2x = 10 and -5x = 25 equivalent? Explain.
Answer:
The equations -2x = 10 and -5x = 25 are equivalent

Explanation:
The given equations are:
-2x = 10 and -5x = 25
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
So,
From -2x = 10,
x = 10 ÷ ( -2 )
x = -10 ÷ 2
x = -5
From -5x = 25,
x = 25 ÷ ( -5 )
x = -25 ÷ 5
x = -5
Hence, from the above,
We can conclude that the equations -2x = 10 and -5x = 25 are equivalent

Question 3.
WRITING Which property of equality would you use to solve the equation 14x = 56? Explain.
Answer:
The given equation is:
14x = 56
So,
It can be re-written as
14 × x = 56
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x = 56 ÷ 14
x = 4
Hence, from the above,
We can conclude that the value of x is: 4

Question 4.
WHICH ONE DOESN’T BELONG? Which expression does not belong with the other three? Explain your reasoning.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 501
Answer:
The equation C) does not belong to the other three

Explanation:
Let the given equations be named as A), B), C), and D)
So,
The given equations are:
A) 8 = x ÷ 2
B) 3 = x ÷ 4
C) x – 6 = 5
D) x ÷ 3 = 9
So,
From the above equations,
The equations A, B), and D) are dividing the numbers whereas equation C) subtracting the numbers
Hence, from the above,
We can conclude that,
The equation C) does not belong to the other three.

Question 5.
x + 5 = 8

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q5

Question 6.
m + 9 = 2
Answer:
The value of m is: -5

Explanation:

Question 7.
y – 4 = 3

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q7

Question 8.
s – 2 = 1
Answer:
The value of s is: 3

Explanation;

Question 9.
w + 3 = -4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q9

Question 10.
n – 6 = -7
Answer:
The value of n is: -1

Explanation:

Question 11.
-14 = p – 11

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q11

Question 12.
0 = 4 + q
Answer:
The value of q is: -4

Explanation;

Question 13.
r + (-8) = 10

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q13

Question 14.
t – (-5) = 9
Answer:
The value of t is: 4

Explanation;

Question 15.
MODELING WITH MATHEMATICS
A discounted amusement park ticket costs $12.95 less than the original price p. Write and solve an equation to find the original price.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 4

Answer:
The equation for the original price is:
p = x + $12.95

Explanation:
It is given that a discounted amusement park ticket costs $12.95 less than the original price p.
So,
Let the discounted amusement park ticket be: x
The given original price is: p
So,
The discounted amusement park ticket cost = p – $12.95
x = p – 12.95
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
p = x + $12.95
Hence, from the above,
We can conclude that the equation for the original price is:
p = x + $12.95

Question 16.
MODELING WITH MATHEMATICS
You and a friend are playing a board game. Your final score x is 12 points less than your friend’s final score. Write and solve an equation to find your final score.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 5

Answer:
Your final score is:
x = ( The score of your friend ) – 12

Explanation:
It is given that you and a friend are playing a board game. Your final score x is 12 points less than your friend’s final score.
So,
The scores table is shown below:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 5
From the above table,
The final score of your friend is: 195
Let the final score of yours is: x
So,
x = ( The final score of your friend ) – 12
= 195 – 12
= 183 points
Hence, from the above,
We can conclude that the final score of yours is: 183 points

USING TOOLS
The sum of the angle measures of a quadrilateral is 360°. In Exercises 17–20, write and solve an equation to find the value of x. Use a protractor to check the reasonableness of your answer.

Question 17.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 6

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q17

Question 18.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 7

Answer:
The value of x is: 85 degrees

Explanation:
We know that,
The sum of angles in a quadrilateral is: 360 degrees
So,
150 + 48 + 77 + x = 360
275 + x = 360
x = 360 – 275
x = 85 degrees
Hence, from the above,
We can conclude that the value of x is: 85 degrees

Question 19.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 8

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q19

Question 20.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 9

Answer:
The value of x is: 100 degrees

Explanation:
We know that,
The sum of all angles in a quadrilateral is: 360 degrees
So,
115 + 85 + 60 + x = 360
260 + x = 360
x = 360 – 260
x = 100 degrees
Hence, from the above,
We can conclude that the value of x is: 100 degrees

In Exercises 21–30, solve the equation. Justify each step. Check your solution.

Question 21.
5g = 20

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q21

Question 22.
4q = 52
Answer:
The value of g is: 13

Explanation:
The given equation is:
4g = 52
4 × g = 52
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
g = 52 ÷ 4
= ( 44 + 8 ) ÷ 4
= ( 44 ÷ 4 ) + ( 8 ÷ 4 )
= 11 + 2
= 13
Hence, from the above,
We can conclude that the value of g is: 13

Question 23.
p ÷ 5 = 3

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q23

Question 24.
y ÷ 7 = 1
Answer:
The value of y is: 7

Explanation:
The given equation is:
y ÷ 7 = 1
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
y = 1 × 7
y = 7
Hence, from the above,
We can conclude that the value of y is: 7

Question 25.
-8r = 64

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q25

Question 26.
x ÷(-2) = 8
Answer:
The value of x is: -16

Explanation:
The given equation is:
x ÷ ( -2 ) = 8
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x ÷ ( -2 ) = 8
x = 8 × ( -2 )
x = -16
Hence, from the above,
We can conclude that the value of x is: -16

Question 27.
\(\frac{x}{6}\) = 8

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q27

Question 28.
\(\frac{w}{-3}\) = 6
Answer:
The value of w is: -18

Explanation:
The given equation is:
\(\frac{w}{-3}\) = 6
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
\(\frac{w}{-3}\) = 6
w = 6 × ( -3 )
w = -18
Hence, from the above,
We can conclude that the value of w is: -18

Question 29.
-54 = 9s

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q29

Question 30.
-7 = \(\frac{t}{7}\)
Answer:
The value of t is: -49

Explanation:
The given equation is:
-7 = \(\frac{t}{7}\)
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-7 = \(\frac{t}{7}\)
t = -7 × 7
t = -49
Hence, from the above
We can conclude that the value of t is: -49

In Exercises 31– 38, solve the equation. Check your solution.

Question 31.
\(\frac{3}{2}\) + t = \(\frac{1}{2}\)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q31

Question 32.
b – \(\frac{3}{16}\) = \(\frac{5}{16}\)
Answer:
The value of b is: \(\frac{1}{2}\)

Explanation:
The given equation is:
b – \(\frac{3}{16}\) = \(\frac{5}{16}\)
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
b = \(\frac{5}{16}\) + \(\frac{3}{16}\)
Since the denominators of both the numerators are equal, add the numerators making the denominator common
So,
b = \(\frac{5 + 3}{16}\)
b = \(\frac{8}{16}\)
b = \(\frac{1}{2}\)
Hence, from the above,
We can conclude that the value of b is: \(\frac{1}{2}\)

Question 33.
\(\frac{3}{7}\)m = 6

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q33

Question 34.
–\(\frac{2}{5}\)y = 4
Answer:
The value of y is: 10

Explanation:
The given equation is:
–\(\frac{2}{5}\)y = 4
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
–\(\frac{2}{5}\)y = 4
–\(\frac{2}{5}\) × y = 4
y = 4 ÷ –\(\frac{2}{5}\)
y = 4 × –\(\frac{5}{2}\)
y = -4 × –\(\frac{5}{2}\)
y = –\(\frac{4}{1}\) × –\(\frac{5}{2}\)
y = –\(\frac{4 × 5}{1 × 2}\)
y = 10
Hence, from the above,
We can conclude that the value of y is: 10

Question 35.
5.2 = a – 0.4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q35

Question 36.
f + 3π = 7π
Answer:
The value of f is: 4π

Explanation:
The given equation is:
f + 3π = 7π
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
f + 3π = 7π
f = 7π – 3π
f = π ( 7 – 3 )
f = π ( 4 )
f = 4π
Hence, from the above,
We can conclude that the value of f is: 4π

Question 37.
– 108π = 6πj

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q37

Question 38.
x ÷ (-2) = 1.4
Answer:
The value of x is: –\(\frac{14}{5}\)

Explanation:
The given equation is:
x ÷ ( -2 ) = 1.4
We know that,
A) – ÷ – = +
B) + ÷ – = –
C) + ÷ + = +
D) – ÷ + = –
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x ÷ ( -2 ) = 1.4
x ÷ ( -2 ) = \(\frac{14}{10}\)
x ÷ ( -2 ) = \(\frac{7}{5}\)
x = \(\frac{7}{5}\) × ( -2 )
x = – \(\frac{7}{5}\) × \(\frac{2}{1}\)
x = –\(\frac{14}{5}\)
Hence, from the above,
We can conclude that the value of x is: –\(\frac{14}{5}\)

ERROR ANALYSIS
In Exercises 39 and 40, describe and correct the error in solving the equation.

Question 39.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 10

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q39

Question 40.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 11

Answer:
A negative 3 should have been multiplied to each side.
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
So,
-(\(\frac{m}{3}\) ) =-4
-3  ( \(\frac{m}{3}\) ) = -4 ( -3 )
3 ( \(\frac{m}{3}\) ) = -4 ( -3 )
3 ( \(\frac{m}{3}\) ) = 12
\(\frac{m}{3}\)  × \(\frac{3}{1}\) = 12
m = 12
Hence, from the above,
We can conclude that the value of m is: 12

Question 41.
ANALYZING RELATIONSHIPS
A baker orders 162 eggs. Each carton contains 18 eggs. Which equation can you use to find the number x of cartons? Explain your reasoning and solve the equation.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 12

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q41

MODELING WITH MATHEMATICS
In Exercises 42– 44, write and solve an equation to answer the question.

Question 42.
The temperature at 5 P.M. is 20°F. The temperature at 10 P.M. is -5°F. How many degrees did the temperature fall?
Answer:
The fall in temperature is: 25 degrees Fahrenheit

Explanation:
It is given that the temperature at 5 P.M. is 20°F and the temperature at 10 P.M. is -5°F.
So,
The fall in temperature = ( The temperature at 5 P.M ) – ( The temperature at 10 P.M )
We know that,
A) – × – = +
B) + × – = –
C) + × + = +
D) – × + = –
So,
The fall in temperature = 20 – ( -5 )
= 20 + 5
= 25 degrees Fahrenheit
Hence, from the above,
We can conclude that the fall in temperature is: 25 degrees Fahrenheit

Question 43.
The length of an American flag is 1.9 times its width. What is the width of the flag?
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 13

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q43

Question 44.
The balance of an investment account is $308 more than the balance 4 years ago. The current balance of the account is $4708. What was the balance 4 years ago?
Answer:
The balance 4 years ago is: $4,400

Explanation:
It is given that the balance of an investment account is $308 more than the balance 4 years ago. The current balance of the account is $4708.
So,
The current balance of the account = ( The balance of an investment account 4 years ago ) + $308
Let the balance of an investment account four years ago be x.
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
$4,708 = x + $308
x = 4,708 – 308
x = $4,400
Hence, from the above,
We can conclude that the balance of an investment account four years ago is: $4,400

Question 45.
REASONING
Identify the property of equality that makes Equation 1 and Equation 2 equivalent.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 14

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q45

PROBLEM-SOLVING
Question 46.

Tatami mats are used as a floor covering in Japan. One possible layout uses four identical rectangular mats and one square mat, as shown. The area of the square mat is half the area of one of the rectangular mats.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 15
a. Write and solve an equation to find the area of one rectangular mat.
Answer:
The area of one rectangular mat is: 18 ft²

Explanation:
It is given that the tatami mats are used as a floor covering in Japan and for that, one layout of tatami mats requires the four identical rectangular mats and the one square mat
So,
The total area of the tatami mats = ( The area of the four rectangular mats ) + ( The area of the one square mat )
The give tatami mat layout is:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 15
From the layout,
We can observe that
The total area of the layout is: 81 ft²
So,
The total area of tatami mats = 81 ft²
( The area of the four rectangular mats ) + ( The area of the one square mat ) = 81 ft²
It is also given that
The area of a square mat is half of one of the rectangular mats
So,
Area of the square mat = ( Area of the rectangular mat ) ÷ 2
So,
( The area of the four rectangular mats ) + \(\frac{Area of the rectangular mat}{2}\)  = 81 ft²
4 ( The area of the rectangular mat ) + \(\frac{Area of the rectangular mat}{2}\)  = 81 ft²
\(\frac{8}{2}\) ( The area of the rectangular mat ) + \(\frac{1}{2}\) ( The area of the rectangular mat ) = 81 ft²
( The area of the rectangular mat ) [ \(\frac{8}{2}\) + \(\frac{1}{2}\) ] = 81 ft²
\(\frac{9}{2}\) ( The area of the rectangular mat ) = 81 ft²
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
The area of the rectangular mat = 81 ÷ \(\frac{9}{2}\)
= 81 × \(\frac{2}{9}\)
= \(\frac{81}{1}\) × \(\frac{2}{9}\)
= \(\frac{81 × 2}{9 × 1}\)
= 18 ft²
Hence, from the above,
We can conclude that the area of one rectangular mat is: 18 ft²

b. The length of a rectangular mat is twice the width. Use Guess, Check, and Revise to find the dimensions of one rectangular mat.
Answer:
The dimensions of the rectangular mat are:
Length: 6 ft
Width: 3 ft

Explanation:
From the above problem,
The area of the rectangular mat = 18 ft²
It is given that the length of a rectangular mat is twice the width.
We know that the area of the rectangle = ( Length ) × ( Width )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
It is also given that the length of a rectangular mat is twice the width
So,
Length of a rectangular mat = 2 × Width
Now,
The area of the rectangular mat = Length × Width
18 = 2 × Width × Width
Width × Width = 18 ÷ 2
Width × Width = 9
From guessing,
We can say that
Width of the rectangular mat = 3 ft
Now,
The length of the rectangular mat = 2 × 3
= 6 ft
Hence, from the above,
We can conclude that the dimensions of the rectangular mat are:
Length: 6 ft
Width: 3 ft

Question 47.
PROBLEM-SOLVING
You spend $30.40 on 4 CDs. Each CD costs the same amount and is on sale for 80% of the original price.
a. Write and solve an equation to find how much you spend on each CD.
b. The next day, the CDs are no longer on sale. You have $25. Will you be able to buy 3 more CDs? Explain your reasoning.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 15.1

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q47

Question 48.
ANALYZING RELATIONSHIPS
As c increases, does the value of x increase, decrease, or stay the same for each equation? Assume c is positive.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 16

Answer:
Let assume the values of c be: 0,1,2,3
So,
The completed table by taking the values of c is:

By taking the values of c positive i.e., 0, 1, 2, 3
We can observe that as the value of c increases, the values of x sometimes increasing and sometimes stays the same but not decreasing.

Question 49.
USING STRUCTURE
Use the values -2, 5, 9, and 10 to complete each statement about the equation ax = b – 5.
a. When a = ___ and b = ___, x is a positive integer.
b. When a = ___ and b = ___, x is a negative integer.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q51

Question 50.
HOW DO YOU SEE IT?
The circle graph shows the percents of different animals sold at a local pet store in 1 year.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 17
a. What percent is represented by the entire circle?
Answer:
The percent represented by the entire circle is = 69 % + x %

Explanation:
It is given that the circle represents the percent of different animals sold at a local store for 1 year
Now,
The given circle is:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 17
We know that,
In terms of percentages, any circle represents 100%
So,
The equation representing the circle is:
The percentage of different animals in the circle = 48 + 5 + 9 + 7 +x
The percentage of different animals in the circle= 69% + x%

b. How does the equation 7 + 9 + 5 + 48 + x = 100 relate to the circle graph? How can you use this equation to find the percent of cats sold?
Answer:
The percent of cats sold is: 31%

Explanation:
We know that,
In terms of percentages, any circle represents 100%
So,
The total percent of animals = The percent of animals that are represented by the circle
100% = 69% + x%
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x% = 100% – 69%
x% = 31%
Hence, from the above,
We can conclude that the percent of cats is: 31%

Question 51.
REASONING
One-sixth of the girls and two-sevenths of the boys in a school marching band are in the percussion section. The percussion section has 6 girls and 10 boys. How many students are in the marching band? Explain.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q51

Question 52.
THOUGHT-PROVOKING
Write a real-life problem that can be modeled by an equation equivalent to the equation 5x = 30. Then solve the equation and write the answer in the context of your real-life problem.

Answer:
Let suppose there is some number of boys. The number of girls is five times of the boys and the total number of girls is 30. Find the number of boys?
Ans:
Let,
The number of boys is x.
It is given that the number of girls is five times of boys.
So,
The number of girls = 5x
It is also given that
The number of girls = 30
So,
5x = 30
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5 × x = 30
x = 30 ÷ 5
x = 6
Hence, from the above,
We can conclude that the number of boys is: 6

MATHEMATICAL CONNECTIONS
In Exercises 53–56, find the height h or the area of the base B of the solid.

Question 53.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 18

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q53

Question 54.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 19

Answer:
The height of the cuboid is: 9 cm

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 19
We know that,
The volume of a cuboid = L × B × H
We know that,
The cuboid is made from a rectangle
We know that,
The area of a rectangle = L × H
So,
The volume of a cuboid = A × B
From the above figure,
The given volume is: 1323 cm³
The given Area is: 147 cm²
So,
1323 = 147 × H
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
H = 1323 ÷ 147
H = 9
Hence, from the above,
We can conclude that the height of the cuboid is: 9 cm

Question 55.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 20

Answer:

Question 56.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 21

Answer:
The height of the prism is: \(\frac{5}{6}\) ft

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 21
We know that,
The volume of the prism =  Area × Height
From the above figure,
The volume of the prism = 35 ft³
The area of the prism = 30 ft²
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
35 = 30 × H
H = 35 ÷ 30
H = \(\frac{5}{6}\) ft
Hence, from the above,
We can conclude that the height of the prism is: \(\frac{5}{6}\) ft

Question 57.
MAKING AN ARGUMENT
In baseball, a player’s batting average is calculated by dividing the number of hits by the number of at-bats. The table shows Player A’s batting average and the number of at-bats for three regular seasons.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 22
a. How many hits did Player A have in the 2011 regular season? Round your answer to the nearest whole number.
b. Player B had 33 fewer hits in the 2011 season than Player A but had a greater batting average. Your friend concludes that Player B had more at-bats in the 2011 season than Player A. Is your friend correct? Explain. Maintaining

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q57

Maintaining Mathematical Proficiency

Use the Distributive Property to simplify the expression.

Question 58.
8(y + 3)
Answer:
8 ( y + 3 ) = 8y + 24

Explanation:
The given expression is: 8 ( y + 3 )
We know that,
By using the Distributive Property,
a ( b + c ) = ( a × b ) + ( a × c )
So,
By using the above Property,
8 ( y + 3 ) = ( 8 × y ) + ( 8 × 3 )
= 8y + 24
Hence, from the above,
We can conclude that
8 ( y + 3 ) = 8y + 24

Question 59.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 23

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q59

Question 60.
5(m + 3 + n)
Answer:
5 ( m + 3 + n ) = 5m + 5n + 15

Explanation:
The given expression is: 5 ( m + 3 + n )
By using the Distributive Property,
a ( b + c ) = ( a × b ) + ( a × c )
So,
By using the above Property,
5 ( m + 3 + n ) = ( 5 × m ) + ( 5 × 3 ) + ( 5 × n )
= 5m + 15 + 5n
Hence, from the above,
We can conclude that,
5 ( m + 3 + n ) = 5m + 15 + 5n

Question 61.
4(2p + 4q + 6)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q61

Copy and complete the statement. Round to the nearest hundredth, if necessary.

Question 62.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 24

Answer:
The missing number is: \(\frac{1}{12}\)

Explanation:
Let the missing number be: x
So,
The given equation is:
\(\frac{5L}{min}\) = \(\frac{x L}{h}\)
We know that,
1 hour = 60 minutes
So,
1 min = \(\frac{1}{60}\) hour
So,
\(\frac{5 L}{min}\) = \(\frac{5 L × 1}{60h}\)
\(\frac{5 L}{min}\) = \(\frac{1 L }{12h}\)
So,
x = \(\frac{1}{12}\)
Hence, from the above,
We can conclude that,
The missing number is: \(\frac{1}{12}\)

Question 63.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 25

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q63

Question 64.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 26

Answer:
The missing number is: \(\frac{1}{12}\)

Explanation:
Let the missing number be: x
So,
The given equation is:
\(\frac{7 gal}{min}\) = \(\frac{x qin}{sec}\)
We know that,
1 min = 60 seconds
1 quintal = 100 kg
1 gallon = 3.78 kg = 4 kg
So,
1 gallon = 0.04 quintal
1 sec = \(\frac{1}{60}\) min
So,
\(\frac{7 gal}{min}\) = \(\frac{x qin × 1}{60min}\)
\(\frac{7 gal}{min}\) = \(\frac{1 L }{12h}\)
So,
x = \(\frac{1}{12}\)
Hence, from the above,
We can conclude that,
The missing number is: \(\frac{1}{12}\)

Question 65.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 27

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.1-Q65

Lesson 1.2 Solving Multi-step Equations

Essential Question

How can you use multi-step equations to solve real-life problems?

EXPLORATION 1
Solving for the Angle Measures of a Polygon

Work with a partner. The sum S of the angle measures of a polygon with n sides can be found using the formula S = 180(n – 2). Write and solve an equation to find each value of x. Justify the steps in your solution. Then find the angle measures of each polygon. How can you check the reasonableness of your answers?
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 27.1
Answer:
The given polygons are:

It is given that,
The sum S of the angle measures of a polygon with n sides can be found using the formula S = 180(n – 2).
a)
The number of sides (n ) = 3
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 3 – 2 )
= 180 ( 1 )
= 180
Now,
The given sides of a polygon are: 30, 9x, (30 + x )
So,
30 + 9x + 30 + x = 180
60 + 10x = 180
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
10x = 180 – 60
10x = 120
x = 120 ÷ 10
x = 12
Hence, from the above,
The angle measures of the given polygon are:
30, 9 × 12, 30 + 12
= 30, 108, 45 degrees
b)
The number of sides (n ) = 3
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 3 – 2 )
= 180 ( 1 )
= 180
Now,
The given sides of a polygon are: 30, 9x, (30 + x )
So,
50 + x + 10 + 20 + x = 180
80 + 2x = 180
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2x = 180 – 80
2x = 100
x = 100 ÷ 2
x = 50
Hence, from the above,
The angle measures of the given polygon are:
50, 50 + 10, 50 + 20
= 50, 60, 70 degrees
c)
The number of sides (n ) = 4
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 4 – 2 )
= 180 ( 2 )
= 360
Now,
The given sides of a polygon are: 50, x, ( 2x + 20), ( 2x + 30 )
So,
50 + x + 2x + 20 + 2x + 30 = 360
100 + 5x = 360
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5x = 360 – 100
5x = 260
x = 260 ÷ 5
x = 52
Hence, from the above,
The angle measures of the given polygon are:
50,52, 2 (52) + 20, 2(52) + 30
= 50, 52, 124, 134 degrees
d)
The number of sides (n ) = 4
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 4 – 2 )
= 180 ( 2 )
= 360
Now,
The given sides of a polygon are: x, x + 42, x + 35, x – 17
So,
x + x + 42 + x + 35 + x – 17 = 360
60 + 4x = 360
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4x = 360 – 60
4x = 300
x = 300 ÷ 4
x = 75
Hence, from the above,
The angle measures of the given polygon are:
75,  75 + 42,  75 + 35 , 75 – 17
= 75, 117, 110, 58 degrees
e)
The number of sides (n ) = 5
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 5 – 2 )
= 180 ( 3 )
= 540
Now,
The given sides of a polygon are: (4x + 15), (5x + 10), (8x + 8), (3x + 5), (5x + 2)
So,
(4x + 15)+ (5x + 10)+ (8x + 8)+ (3x + 5)+ (5x + 2) = 540
40 + 25x = 540
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
25x = 540 – 40
25x = 500
x = 500 ÷ 25
x = 20
Hence, from the above,
The angle measures of the given polygon are:
(4. 20 + 15)+ (5. 20 + 10)+ (8.20 + 8)+ (3. 20 + 5)+ (5. 20 + 2)
= 95, 110, 168, 65, 102 degrees
f)
The number of sides (n ) = 5
So,
The sum of angles ( S ) = 180 ( n – 2 )
= 180 ( 5 – 2 )
= 180 ( 3 )
= 540
Now,
The given sides of a polygon are: (2x + 25), (3x + 16), (2x + 8), (4x – 18), (3x – 7)
So,
(2x + 25) + (3x + 16) + (2x + 8) + (4x – 18) + (3x – 7) = 540
24 + 14x = 540
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
14x = 540 – 24
14x = 516
x = 540 ÷ 14
x = 38.5
x = 39
Hence, from the above,
The angle measures of the given polygon are:
(2. 39 + 25), (3.39 + 16), (2.39 + 8), (4.39 – 18), (3.39 – 7)
= 103, 133, 86, 138, 110 degrees

EXPLORATION 2
Work with a partner.

a. Draw an irregular polygon.
Answer:

b. Measure the angles of the polygon. Record the measurements on a separate sheet of paper.
Answer:

c. Choose a value for x. Then, using this value, work backward to assign a variable expression to each angle measure, as in Exploration 1.
d. Trade polygons with your partner.
e. Solve an equation to find the angle measures of the polygon your partner drew. Do your answers seem reasonable? Explain.

Communicate Your Answer

Question 3.
How can you use multi-step equations to solve real-life problems?

Question 4.
In Exploration 1, you were given the formula for the sum S of the angle measures of a polygon with n sides. Explain why this formula works.
Answer:
We know that,
The sum of the angles in a triangle is: 180 degrees
The triangle is also a quadrilateral
So,
A quadrilateral can be formed by the minimum of the three lines
So,
The minimum sum of all the angles in a quadrilateral is: 180 degrees
Now,
Let suppose we form a quadrilateral with 4 sides.
So,
The sum of all the angles in a quadrilateral = 360 degrees = 180 degrees × 2
= 180 degrees ( 4 sides -2 )
Let suppose we form a quadrilateral with 5 sides
So,
The sum of all the angles in a quadrilateral = 540 degrees = 180 degrees × 3
= 180 degrees ( 5 -2 )
Hence, in general,
We can conclude that the sum of all the angles with n sides in a quadrilateral = 180 degrees ( n-2 )

Question 5.
The sum of the angle measures of a polygon is 1080º. How many sides does the polygon have? Explain how you found your answer.
Answer:
The number of sides the polygon with 1080° have: 6

Explanation:
It is given that the sum of all angle measures of a polygon is: 1080°
We know that,
The sum of angle measures with n sides in a polygon = 180° ( n – 2 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
1080° =180° ( n – 2 )
n – 2 = 1080 ÷ 180
n – 2 = 6
n = 6 + 2
n = 8
Hence, from the above,
We can conclude that the number of sides of the polygon with sum of the angles 1080° is: 6

1.2 Lesson

Monitoring Progress

Solve the equation. Check your solution.

Question 1.
-2n + 3 = 9
Answer:
The value of n is: -3

Explanation:
The given equation is:
-2n + 3 = 9
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-2n + 3 = 9
-2n = 9 – (+3 )
n = 6 ÷ ( -2 )
= -3
Hence from the above,
We can conclude that the value of n is: -3

Question 2.
-21 = \(\frac{1}{2}\) – 11

Question 3.
-2x – 10x + 12 = 18
Answer:
The value of x is: –\(\frac{1}{2}\)

Explanation:
The given equation is:
-2x – 10x + 12 = 18
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-( 2x + 10x ) = 18 – 12
-12x = 6
x = 6 ÷ ( -12 )
x = –\(\frac{1}{2}\)
Hence, from the above,
We can conclude that the value of x is: –\(\frac{1}{2}\)

Monitoring Progress

Solve the equation. Check your solution.

Question 4.
3(x + 1) + 6 = -9
Answer:
The value of x is: -6

Explanation:
The given equation is:
3 ( x + 1 ) + 6 = -9
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
3 ( x + 1 ) = -9 – (+6 )
By using the Distributive property,
3 ( x + 1 ) = 3x + 3
So,
3x + 3 = -15
3x = -15 – ( +3 )
3x = -18
x = -18 ÷ 3
x = -6
Hence, from the above,
We can conclude that the value of x is: -6

Question 5.
15 = 5 + 4(2d – 3)
Answer:
The value of d is:\(\frac{11}{4}\)

Explanation:
The given equation is:
15 = 5 + 4 ( 2d – 3 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
4 ( 2d – 3 ) = 15 -5
4 ( 2d – 3 ) = 10
By using the Distributive property,
4 ( 2d – 3 ) = 4 (2d ) -4 (3 )
= 8d – 12
So,
8d – 12 = 10
8d = 10 + 12
8d = 22
d = 22 ÷ 8
d = \(\frac{11}{4}\)
Hence, from the above,
We can conclude that the value of d is: \(\frac{11}{4}\)

Question 6.
13 = -2(y – 4) + 3y
Answer:
The value of y is: 5

Explanation:
The given equation is:
13 = -2 ( y – 4 ) + 3y
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
By using the Distributive Property,
-2 ( y – 4 ) = -2y + 8
So,
13 = -2y + 8 + 3y
13 = y + 8
y = 13 – 8
y = 5
Hence, from the above,
We can conclude that the value of y is: 5

Question 7.
2x(5 – 3) – 3x = 5
Answer:
The value of x is: 5

Explanation:
The given equation is:
2x ( 5 – 3 ) – 3x = 5
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2x ( 2 ) – 3x = 5
4x – 3x = 5
x = 5
Hence, from the above,
We can conclude that the value of y is: 5

Question 8.
-4(2m + 5) – 3m = 35
Answer:
The value of m is: -5

Explanation:
The given equation is:
-4 ( 2m + 5 ) – 3m = 35
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Now,
By using the Distributive Property,
-4 ( 2m + 5 ) = -4 (2m ) + 5 ( -4 )
= -8m -20
So,
-8m -20 -3m = 35
-11m – 20 = 35
-11m = 35 + 20
-11m = 55
m = 55 ÷ ( -11 )
m = -5
Hence, from the above,
We can conclude that the value of m is: -5

Question 9.
5(3 – x) + 2(3 – x) = 14
Answer:
The value of x is: 1

Explanation:
The given equation is:
5 ( 3 – x ) + 2 ( 3 – x ) = 14
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Now,
By using the Distributive property,
5 ( 3 – x ) = 5 (3 ) -5 (x)
= 15 – 5x
2 ( 3 – x ) = 2 (3) – 2 ( x)
= 6 – 2x
So,
15 – 5x + 6 – 2x = 14
21 – 7x = 14
7x = 21 – 14
7x = 7
x = 7 ÷ 7
x = 1
Hence, from the above,
We can conclude that the value of x is: 1

Monitoring Progress

Question 10.
The formula d = \(\frac{1}{2}\)n + 26 relates the nozzle pressure n (in pounds per square inch) of a fire hose and the maximum horizontal distance the water reaches d (in feet). How much pressure is needed to reach a fire 50 feet away?
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 28
Answer:
The pressure needed to reach a fire 50 feet away (n ) is: 48 pounds per square inch

Explanation:
It is given that the formula
d = \(\frac{1}{2}\)n + 26
relates the nozzle pressure n (in pounds per square inch) of a fire hose and the maximum horizontal distance the water reaches d (in feet).
So,
The given equation is:
d = \(\frac{1}{2}\)n + 26
Where,
d is the maximum horizontal distance
n is the pressure
It is also given that the maximum horizontal distance is: 50 feet
So,
50 = \(\frac{1}{2}\)n + 26
\(\frac{1}{2}\)n = 50 – 26
\(\frac{1}{2}\)n = 24
\(\frac{1}{2}\) × n = 24
n = 24 × 2
n = 48 pounds per square inch
Hence, from the above
We can conclude that the pressure needed to reach 50 feet away is: 48 pounds per square inch

Question 11.
Monitoring Progress
You have 96 feet of fencing to enclose a rectangular pen for your dog. To provide sufficient running space for your dog to exercise, the pen should be three times as long as it is wide. Find the dimensions of the pen.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 29
Answer:
The dimensions of the pen are:
length of the pen: 12 feet
Width of the pen: 36 feet

Explanation;
It is given that you  have 96 feet of fencing to enclose a rectangular pen for your dog. To provide sufficient running space for your dog to exercise, the pen should be three times as long as it is wide.
So,
The perimeter of the rectangular pen is: 96 feet
We know that,
The perimeter of the rectangle = 2 (Length + Width )
It is also given that the pen is three times as long as it is wide
So,
Width = 3 × Length
So,
The perimeter of the rectangular pen =2 (  Length + ( 3 × Length ) )
96 = 2 ( 4 × Length )
4 × Length = 96 ÷ 2
4 × Length = 48
Length = 48 ÷ 4
Length = 12 feet
So,
Width = 3 × Length
= 3 × 12 = 36 feet
hence, from the above,
We can conclude that
The dimensions of the rectangular pen are:
Length of the pen is: 12 feet
Width of the pen is: 36 feet

Solving Multi-step Equations 1.2 Exercises

Monitoring Progress and Modeling with Mathematics

In Exercises 3−14, solve the equation. Check your solution.

Vocabulary and Core ConceptCheck

Question 1.
COMPLETE THE SENTENCE To solve the equation 2x + 3x = 20, first combine 2x and 3x because they are _________.
Answer:
The given equation is:
2x + 3x = 20
As 2x and 3x are combined by the symbol “+”, add 2x and 3x
So,
2x + 3x = 5x
So,
5x = 20
x = 20 ÷ 4
x = 5

Question 2.
WRITING Describe two ways to solve the equation 2(4x – 11) = 10.
Answer:
The given equation is:
2 (4x – 11) = 10
Way-1:
2 × (4x – 11) = 10
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4x – 11 = 10 ÷ 2
4x – 11 = 5
4x = 5 + 11
4x = 16
x = 16 ÷ 4
x = 4
Hence,
The value of x is: 4

Way-2:
By using the Distributive Property,
2 (4x – 11) = 2 (4x) – 2 (11)
= 8x – 22
So,
8x – 22 = 10
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
8x = 10 + 22
8x = 32
x = 32 ÷ 8
x = 4
Hence,
The value of x is: 4

Question 3.
3w + 7 = 19

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q3

Question 4.
2g – 13 = 3
Answer:
The value of g is: 8

Explanation:
The given equation is:
2g – 13 = 3
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2g = 3 + 13
2g = 16
2 × g = 16
g = 16 ÷ 2
g = 8
Hence, from the above,
We can conclude that the value of g is: 8

Question 5.
11 = 12 – q

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q5

Question 6.
10 = 7 – m
Answer:
The value of m is: -3

Explanation:
The given equation is:
10 = 7 – m
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-m = 10 – 7
-m = 3
Multiply with “-” on both sides
– (-m ) = -3
m = -3
Hence, from the above,
We can conclude that the value of m is: -3

Question 7.
5 = \(\frac{z}{-4}\) – 3

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q7

Question 8.
\(\frac{a}{3}\) + 4 = 6
Answer:
The value of a is: 6

Explanation:
The given equation is:
\(\frac{a}{3}\) + 4 = 6
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
\(\frac{a}{3}\) = 6 – 4
\(\frac{a}{3}\) = 2
a = 2 × 3
a = 6
Hence, from the above,
We can conclude that the value of a is: 6

Question 9.
\(\frac{h + 6}{5}\) = 2

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q9

Question 10.
\(\frac{d – 8}{-2}\) = 12
Answer:
The value of d is: -16

Explanation:
The given equation is:
\(\frac{d – 8}{-2}\) = 12
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
d – 8 = 12 × (-2)
d – 8 = -24
d = -24 + 8
d = -16
Hence, from the above,
We can conclude that the value of d is: -16

Question 11.
8y + 3y = 44

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q11

Question 12.
36 = 13n – 4n
Answer:
The value of n is: 4

Explanation:
The given equation is:
36 = 13n – 4n
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
36 = 9n
9n = 36
n = 36 ÷ 9
n = 4
Hence, from the above,
We can conclude that the value of n is: 4

Question 13.
12v + 10v + 14 = 80

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q13

Question 14.
6c – 8 – 2c = -16
Answer:
The value of c is: -2

Explanation:
The given equation is:
6c – 8 – 2c = -16
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4c – 8 = -16
4c = -16 + 8
4 × c = -8
c = -8 ÷ 4
c = -2
Hence, from the above,
We can conclude that the value of c is: -2

Question 15.
MODELING WITH MATHEMATICS
The altitude a (in feet) of a plane in minutes after liftoff is given by a = 3400t + 600. How many minutes after liftoff is the plane at an altitude of 21,000 feet?
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 30

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q15

Question 16.
MODELING WITH MATHEMATICS
A repair bill for your car is $553. The parts cost $265. The labor cost is $48 per hour. Write and solve an equation to find the number of hours of labor spent repairing the car.
Answer:
The number of hours of labor spent repairing the car is: 6 hours

Explanation:
It is given that a repair bill for your car is $553. The parts cost $265. The labor cost is $48 per hour.
Let the number of hours of labor spent repairing the car be: x
So,
The total bill to repair your car = ( The labor cost per hour ) × ( The number of hours of labor spent repairing the car ) +  (The cost of the parts )
553 = 48x + 265
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
48x = 553 – 265
48x = 288
48 × x = 288
x = 288 ÷ 48
x = 6
Hence, from the above,
We can conclude that the number of hours of labor spent repairing the car is: 6 hours

In Exercises 17−24, solve the equation. Check your solution.

Question 17.
4(z + 5) = 32

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q17

Question 18.
-2(4g – 3) = 3018.
Answer:
The value of g is: 378

Explanation:
The given equation is:
-2 (4g – 3) = 3018
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-2 × ( 4g – 3 ) = 3018
4g – 3 = 3018 ÷ 2
4g – 3 = 1,509
4g = 1,509 +3
4 × g = 1,512
g = 1,512 ÷ 4
g = 378
Hence, from the above,
We can conclude that the value of g is: 378

Question 19.
6 + 5(m + 1) = 26

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q19

Question 20.
5h+ 2(11 – h) = -5
Answer:
The value of h is: -9

Explanation:
The given equation is:
5h + 2 ( 11-h ) = -5
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
By using the Distributive Property of Multiplication,
2 ( 11 – h ) = 2 (11 ) – 2 ( h )
= 22 – 2h
So,
5h + 22 – 2h = -5
3h + 22 = -5
3h = -5 – (+22)
3h = -5 -22
3h = -27
h = -27 ÷ 3
h = -9
Hence, from the above,
We can conclude that the value of h is: -9

Question 21.
27 = 3c – 3(6 – 2c)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q21

Question 22.
-3 = 12y – 5(2y – 7)
Answer:
The value of y is: -19

Explanation:
The given equation is:
-3 = 12y – 5 (2y – 7)
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
12y – 5 (2y – 7) = -3
By using the Distributive Property of Multiplication,
5 ( 2y – 7 ) = 5 (2y ) – 5 (7 )
= 10y – 35
So,
12y – ( 10y – 35 ) = -3
12y – 10y + 35 = -3
2y + 35 = -3
2y = -3 – (+35 )
2y = -3 – 35
2y = -38
y = -38 ÷ 2
y = -19
Hence, from the above,
We can conclude that the value of y is: -19

Question 23.
-3(3 + x) + 4(x – 6) = -4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q23

Question 24.
5(r + 9) – 2(1 – r) = 1
Answer:
The value of r is: -6

Explanation:
The given equation is:
5 ( r + 9 ) – 2 ( 1 – r ) = 1
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Now,
By using the Distributive Property of Multiplication,
5 ( r + 9 ) = 5 ( r ) + 5 ( 9 )
= 5r + 45
2 ( 1 – r ) = 2 ( 1 ) – 2 ( r )
= 2 – 2r
So,
5r + 45 – ( 2 – 2r ) = 1
5r + 45 – 2 + 2r = 1
7r + 43 = 1
7r = 1 – 43
7r = -42
r = -42 ÷ 7
r = -6
Hence, from the above,
We can conclude that the value of r is: -6

USING TOOLS
In Exercises 25−28, find the value of the variable. Then find the angle measures of the polygon. Use a protractor to check the reasonableness of your answer.

Question 25.
Big Ideas Math Algebra 1 Answers Chapter 1 Solving Linear Equations 31

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q25

Question 26.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 32
Answer:
The angle measures of the rhombus are:
60°, 60°, 120°, 120°

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 32
From the above figure,
The angle measures of the rhombus are: a°, 2a°, a°, 2a°
It is also given that the sum of all the angle measures is: 360°
So,
a° + 2a° + a° + 2a° = 360°
6a° = 360°
a = 360° ÷ 6
a = 60°
Hence, from the above,
We can conclude that the angle measures of the rhombus are:
a°, 2a°, a°, 2a° = 60°, 2 ( 60° ), 60°, 2 ( 60° )
= 60°, 60°, 120°, 120°

Question 27.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 33

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q27

Question 28.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 34
Answer:
The angle measures of the hexagon are:
120°, 120°, 100°, 120°, 250°, 260°

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 34
From the given figure,
The angle measures of the hexagon are:
120°, 120°, 100°, 120°, x°, (x + 10)°
It is also given that the sum of the angle measures of the hexagon is: 720°
So,
120° + 120° + 100° + 120° + x° + (x + 10)° = 720°
470° + x = 720°
x = 720° – 470°
x = 250°
Hence, from the above,
We can conclude that the angle measures of the hexagon are:
120°, 120°, 100°, 120°, x°, (x + 10)° = 120°, 120°, 100°, 120°, 250°, (250 + 10)°
= 120°, 120°, 100°, 120°, 250°, 260°

In Exercises 29−34, write and solve an equation to find the number.

Question 29.
The sum of twice a number and 13 is 75.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q29

Question 30.
The difference of three times a number and 4 is -19.
Answer:
The number is: -5

Explanation:
It is given that the difference of three times of a number and 4 is -19
Now,
Let the number be x
So,
The three times of a number = 3 (x) = 3x
So,
3x – 4 = -19
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
3x = -19 + 4
3x = -15
x = -15 ÷ 3
x = -5
Hence, from the above,
We can conclude that the number is: -5

Question 31.
Eight plus the quotient of a number and 3 is -2.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q31

Question 32.
The sum of twice a number and half the number is 10.
Answer:
The number is: 4

Explanation:
It is given that the sum of twice of a number and half the number is 10.
Let the number be x.
So,
The twice of a number = 2 (x ) = 2x
Half of the number = x ÷ 2 = \(\frac{x}{2}\)
So,
2x + \(\frac{x}{2}\) = 10
2x can be rewritten as: \(\frac{4x}{2}\)
So,
\(\frac{4x}{2}\) + \(\frac{x}{2}\) = 10
\(\frac{4x + x}{2}\) = 10
\(\frac{5x}{2}\) = 10
5x = 10 × 2
5x = 20
x = 20 ÷ 5
x = 4
Hence, from the above,
We can conclude that the numebr is: 4

Question 33.
Six times the sum of a number and 15 is -42.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q33

Question 34.
Four times the difference of a number and 7 is 12.
Answer:
The number is: 4

Explanation:
It is given that the four times the difference of a number and 7 is 12
Let the number be x
So,
Four times of the number = 4 ( x ) = 4x
So,
4x – x = 12
3x = 12
x = 12 ÷ 3
x = 4
Hence, from the above,
We can conclude that the number is: 4

USING EQUATIONS
In Exercises 35−37, write and solve an equation to answer the question. Check that the units on each side of the equation balance.

Question 35.
During the summer, you work 30 hours per week at a gas station and earn $8.75 per hour. You also work as a landscaper for $11 per hour and can work as many hours as you want. You want to earn a total of $400 per week. How many hours must you work as a landscaper?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q35

Question 36.
The area of the surface of the swimming pool is 210 square feet. What is the length d of the deep end (in feet)?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 35

Answer:
The length d of the deep end is: 12 feet

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 35
It is given that the area of the surface of the swimming pool is 210 square feet
From the above figure,
We can observe that the shape of the swimming pool is a rectangle.
So,
Length of the swimming pool = 10 ft
Width of the swimming pool = d + 9 ft
So,
The area of the swimming pool = Length × Width
= 10 × ( d + 9 )
Now,
210 = 10 × ( d + 9 )
d + 9 = 210 ÷ 10
d + 9 = 21
d = 21 – 9
d = 12 feet
Hence, from the above,
We can conclude that the length d of the deep end is: 12 feet

Question 37.
You order two tacos and a salad. The salad costs $2.50. You pay 8% sales tax and leave a $3 tip. You pay a total of $13.80. How much does one taco cost?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q37

JUSTIFYING STEPS
In Exercises 38 and 39, justify each step of the solution.

Question 38.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 36

Answer:
–\(\frac{1}{2}\) ( 5x – 8 ) – 1 = 6                          Write the equation
–\(\frac{1}{2}\) ( 5x – 8 ) = 6 + 1                         Arrange the similar terms
–\(\frac{1}{2}\) ( 5x – 8 ) = 7                                  Simplify
– ( 5x – 8 ) = 7 × 2                                                              Divide by 2 on both sides
– ( 5x – 8 ) = 14                                                                    Simplify
5x – 8 = -14                                                                       Multiply with “-” on both sides
5x = -14 + 8                                                                         Arrange the similar terms
5x = -6                                                                               Divide by 6 on both sides
x = –\(\frac{6}{5}\)                                              The result
Hence,
The solution is: x = –\(\frac{6}{5}\)

Question 39.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 37

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q39

ERROR ANALYSIS
In Exercises 40 and 41, describe and correct the error in solving the equation.

Question 40.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 38

Answer:
The given equation is:
-2 ( 7 – y ) + 4 = -4
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-2 ( 7 – y ) = -4 –  (+4 )
-2 ( 7 – y ) = -4 – 4
-2 ( 7 – y ) = -8
Now,
By using the Distributive Property of Multiplication,
2 ( 7 – y ) = 2 ( 7 ) – 2 ( y )
= 14 – 2y
So,
– ( 14 – 2y ) = -8
2y – 14 = -8
2y = -8 + 14
2y = 6
y = 6 ÷ 2
y = 3
Hence,
The value of y is: 3

Question 41.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 39

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q41

MATHEMATICAL CONNECTIONS
In Exercises 42−44, write and solve an equation to answer the question.

Question 42.
The perimeter of the tennis court is 228 feet. What are the dimensions of the court?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 40

Answer:
The dimensions of the court are:
The Length of the court is: 36 feet
The width of the court is: 78 feet

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 40
It is given that the perimeter of the tennis court is: 228 feet
From the above figure,
We can observe that the shape of the tennis court is the rectangle
So,
The length of the tennis court = w feet
The width of the tennis court =  (2w + 6 ) feet
We know that,
The perimeter of the rectangle = 2 ( Length + Width )
So,
The perimeter of the tennis court = 2 ( Length + Width )
228 = 2 ( w + 2w + 6 )
By using the Distributive Property of Multiplication,
2 ( w + 2w + 6 ) = 2 ( 3w + 6 )
= 2 ( 3w ) + 2 ( 6 )
= 6w + 12
So,
228 = 6w + 12
6w = 228 – 12
6w = 216
w = 216 ÷ 6
w = 36
Hence, from the above,
We can conclude that
The length of the tennis court is: 36 feet
The width of the tennis court is: 2w + 6  = 2 ( 36 ) + 6 = 78 feet

Question 43.
The perimeter of the Norwegian flag is 190 inches. What are the dimensions of the flag?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 41

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q43

Question 44.
The perimeter of the school crossing sign is 102 inches. What is the length of each side?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 42

Answer:
The length of each side is: 15 inches

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 42
It is given that the perimeter of the crossing sign is 102 inches
We know that,
The perimeter of any polygon is the sum of all the sides of that polygon
So,
The perimeter of the crossing sign = s + ( s + 6 ) + ( s + 6 ) + s + 2s
102 = 6s + 12
102 – 12 = 6s
6s = 90
s = 90 ÷ 6
s = 15 inches
Hence, from the above,
We can conclude that the length of each side is: 15 inches

Question 45.
COMPARING METHODS
Solve the equation 2(4 – 8x) + 6 = -1 using (a) Method 1 from Example 3 and (b) Method 2 from Example 3. Which method do you prefer? Explain.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q45
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q45-i

Question 46.
PROBLEM – SOLVING
An online ticket agency charges the amounts shown for basketball tickets. The total cost for an order is $220.70. How many tickets are purchased?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 43

Answer:

Question 47.
MAKING AN ARGUMENT
You have quarters and dimes that total $2.80. Your friend says it is possible that the number of quarters is 8 more than the number of dimes. Is your friend correct? Explain.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q47

Question 48.
THOUGHT-PROVOKING
You teach a math class and assign a weight to each component of the class. You determine final grades by totaling the products of the weights and the component scores. Choose values for the remaining weights and find the necessary score on the final exam for a student to earn an A (90%) in the class, if possible. Explain your reasoning.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 44

Answer:
The completed table is:

From the above table,
The weights can be calculated by the difference between the total participation and the class participation and divide the total value by 100.
So,
The weight of homework = [ ( 100 – 95 ) ÷ 100]
= 5 ÷ 100
= 0.50
The weight of midterm exam = ( 100 – 88 ) ÷ 100
= 12 ÷ 100
= 0.12
So,
The necessary score of the final exam = ( 92 + 95 + 88 ) % ÷ 3
= 275 % ÷ 3
= 91.6 %

Question 49.
REASONING
An even integer can be represented by the expression 2n, where n is an integer. Find three consecutive even integers that have a sum of 54. Explain your reasoning.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q49

Question 50.
HOW DO YOU SEE IT?
The scatter plot shows the attendance for each meeting of a gaming club.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 45
a. The mean attendance for the first four meetings is 20. Is the number of students who attended the fourth meeting greater than or less than 20? Explain.
Answer:
The number of students who attended the fourth meeting is greater than 20

Explanation:
The given graph is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 45
We know that
The mean = ( Sum of the given numbers ) ÷ (The total number of the numbers)
From the above graph,
The attendance of the 1st meeting = 18
The attendance of the 2nd meeting = 21
The attendance of the 3rd meeting = 17
Let the attendance of the 4th meeting be: x
So,
The mean attendance  of the first four meetings = ( The attendance of the 4 meetings ) ÷  ( The total number of meetings )
= ( 18 + 21 + 17 + x ) ÷ 4
It is given that the mean attendance of the first four meetings is: 20
So,
20 =  ( 18 + 21 + 17 + x ) ÷ 4
( 56 + x ) ÷ 4 = 20
56 + x = 20 × 4
56 + x = 80
x = 80 – 56
x = 24
Hence, from the above,
We can conclude that the attendance of the 4th meeting is greater than 20

b. Estimate the number of students who attended the fourth meeting.
Answer:
The number of students who attended the fourth meeting is: 24

Explanation:
The mean attendance  of the first four meetings = ( The attendance of the 4 meetings ) ÷  ( The total number of meetings )
= ( 18 + 21 + 17 + x ) ÷ 4
It is given that the mean attendance of the first four meetings is: 20
So,
20 =  ( 18 + 21 + 17 + x ) ÷ 4
( 56 + x ) ÷ 4 = 20
56 + x = 20 × 4
56 + x = 80
x = 80 – 56
x = 24
Hence, from the above,
We can conclude that the number of students who attended the 4th meeting is: 24

c. Describe a way you can check your estimate in part (b).
Answer:
The estimate in part (b) can be checked by using the property of the mean
So,
The mean attendance of the four meetings = ( The attendance of the four meetings ) ÷ ( The total number of meetings )
= ( 18 + 21 + 17 + 24 ) ÷ 4
= 80 ÷ 4
= 20
Hence, from the above,
We can conclude that the mean attendance of the four meetings is the same as given above.

REASONING
In Exercises 51−56, the letters a, b, and c represent nonzero constants. Solve the equation for x.

Question 51.
bx = -7

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q51

Question 52.
x + a = \(\frac{3}{4}\)
Answer:
The value of x is: \(\frac{3}{4}\) – a

Explanation:
The given equation is:
x + a = \(\frac{3}{4}\)
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x =  \(\frac{3}{4}\) – a
Hence, from the above,
We can conclude that the value of a is: \(\frac{3}{4}\) – a

Question 53.
ax – b = 12.5

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q53

Question 54.
ax + b = c
Answer:
The value of x is: \(\frac{c – b}{a}\)

Explanation:
The given equation is:
ax + b = c
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
ax = c – b
x = \(\frac{c – b}{a}\)
Hence, from the above,
We can conclude that the value of x is: \(\frac{c – b}{a}\)

Question 55.
2bx – bx = -8

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q55

Question 56.
cx – 4b = 5b
Answer
The value of x is: \(\frac{9b}{c}\)

Explanation:
The given equation is:
cx – 4b = 5b
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
cx = 5b + 4b
cx = 9b
x = \(\frac{9b}{c}\)
Hence, from the above,
We can conclude that the value of x is: \(\frac{9b}{c}\)

Maintaining Mathematical Proficiency

Simplify the expression.

Question 57.
4m + 5 – 3m

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q57

Question 58.
9 – 8b + 6b
Answer:
9 – 8b + 6b
= 9 – (8b – 6b )
= 9 – 2b

Question 59.
6t + 3(1 – 2t) – 5

Answer:

Determine whether (a) x = −1 or (b) x = 2 is a solution of the equation.

Question 60.
x – 8 = -9
Answer:
x = -1 is a solution to the given equation

Explanation:
The given equation is:
x – 8 = -9
a) Let x = -1
So,
-1 – 8 = -9
-9 = -9
As LHS is equal to RHS
x = -1 is a solution of the given equation
b) Let x = 2
So,
2 – 8 = -9
-6 = -9
As LHS is not equal to RHS,
x = 2 is not a solution of the given equation

Question 61.
x + 1.5 = 3.5

Answer:

Question 62.
2x – 1 = 3
Answer:
x = 2 is a solution to the given equation

Explanation:
The given equation is:
2x – 1 = 3
a) Let x = -1
So,
2 ( -1 ) – 1 = 3
-2 – 1 = 3
-3 = 3
As LHS is not equal to RHS
x = -1 is not a solution to the given equation
b) Let x = 2
So,
2 ( 2 ) -1 = 3
4 – 1 = 3
3 = 3
As LHS is equal to RHS,
x = 2  is a solution to the given equation

Question 63.
3x + 4 = 1

Answer:

Question 64.
x + 4 = 3x
Answer:
x = 2 is a solution to the given equation

Explanation:
The given equation is:
x + 4 = 3x
a) Let x = -1
So,
-1 + 4 = 3 ( -1 )
= 3 = -3
As LHS is not equal to RHS,
x = -1 is not a solution to the given equation
b) Let x = 2
So,
2 + 4 = 3 ( 2 )
6 = 6
As LHS is equal to RHS,
x = 2 is a solution to the given equation.

Question 65.
-2(x – 1) = 1 – 3x

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.2-Q65

Lesson 1.3 Solving Equations with Variables on Both Sides

EXPLORATION 1
Perimeter

Work with a partner. The two polygons have the same perimeter. Use this information to write and solve an equation involving x. Explain the process you used to find the solution. Then find the perimeter of each polygon.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 46
Answer:
The perimeter of the hexagon is: 6
The perimeter of the square is: 6

Explanation:
The given figures are:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 46
Based on the number of sides (n) in the polygon,
We can say the name of that polygon
So,
In the first figure,
The number of sides is: 6
So,
It is Hexagon
In the second figure,
The number of sides is: 4
So,
It is square ( As all the angles are 90° )
It is given that the two polygons have the same perimeter
We know that,
“Perimeter” of a polygon is defined as the sum of all the sides in the polygon
So,
The sum of all sides in the hexagon = 5 + 2 + 5 + 2 + x + x
= 14 + 2x
The sum of all sides in the square = \(\frac{3x}{2}\) + 3 + 4 + 5
= \(\frac{3x}{2}\) + 12
It is given that the perimeter of both the polygons are equal
So,
14 + 2x = \(\frac{3x}{2}\) + 12
14 – 12 = \(\frac{3x}{2}\) – 2x
\(\frac{3x}{2}\) – 2x = 2
We can write 2x as \(\frac{4x}{2}\)
So,
\(\frac{3x}{2}\) – \(\frac{4x}{2}\) = 2
\(\frac{3x – 4x}{2}\) = 2
\(\frac{-x}{2}\) = 2
– \(\frac{x}{2}\) = 2
-x = 2 × 2
-x = 4
x = -4
Hence,
The perimeter of the Hexagon = 14 + 2x = 14 + 2 ( -4 )
= 14 – 8 = 6
The perimeter of the square = \(\frac{3x}{2}\) + 12
\(\frac{3 × -4}{2}\) + 12
= \(\frac{-12}{2}\) + 12
= \(\frac{-12}{2}\) + \(\frac{24}{2}\)
= \(\frac{24 – 12}{2}\)
= \(\frac{12}{2}\)
= 6
Hence, from the above,
We can conclude that
The perimeter of the Hexagon is: 6
The perimeter of the square is: 6

EXPLORATION 2
Perimeter and Area

Work with a partner.

  • Each figure has the unusual property that the value of its perimeter (in feet) is equal to the value of its area (in square feet). Use this information to write an equation for each figure.
  • Solve each equation for x. Explain the process you used to find the solution.
  • Find the perimeter and area of each figure.

Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 47

Question 3.
How can you solve an equation that has variables on both sides?
Answer:
If the variable is the same on both sides in an equation, then rearrange the like terms
So,
Separate the variables and the numbers and simplify the variables and the numbers
In this way,
We can solve an equation with a single variable

Question 4.
Write three equations that have the variable x on both sides. The equations should be different from those you wrote in Explorations 1 and 2. Have your partner solve the equations.
Answer:
Let the three equations that have variable x on both sides and different from Explorations 1 and 2 are:
a) 6x + 2 = 5x-6
b) 16x = 18x – 2
c) 12x = 15x + 63
Now,
a)
The given equation is:
6x + 2 = 5x – 6
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
6x – 5x = -6 – 2
x = -8
Hence,
The value of x is: -8
b) The given equation is:
9x = 18x – 2
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
18x – 16x = 2
2x = 2
x = 2 ÷ 2
x = 1
Hence,
The value of x is: 1
c) The given equation is:
12x = 15x + 63
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
12x -15x = 63
-3x = 63
x = 63 ÷ ( -3 )
x = -63 ÷ 3
x = -21
Hence,
The value of x is: -21

1.3 Lesson

Monitoring Progress

Solve the equation. Check your solution.

Question 1.
-2x = 3x + 10
Answer:
The value of x is: -2

Explanation:
The given equation is:
-2x = 3x + 10
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-2x – 3x = 10
-5x = 10
x = 10 ÷ (-5)
x = -10 ÷ 5
x = -2
Hence, from the above,
We can conclude that the value of x is: -2

Question 2.
\(\frac{1}{2}\)(6h – 4) = -5h + 1
Answer:
The value of h is: \(\frac{3}{8}\)

Explanation:
The given equation is:
\(\frac{1}{2}\) ( 6h – 4 ) = -5h + 1
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
6h – 4 = 2 ( -5h + 1 )
6h – 4 = 2 ( -5h ) + 2 ( 1 ) [ By using the Distributive Property of Multiplication )
6h – 4 = -10h + 2
6h + 10h = 2 + 4
16h = 6
h = \(\frac{6}{16}\)
h= \(\frac{3}{8}\)
Hence, from the above,
We can conclude that the value of h is: \(\frac{3}{8}\)

Question 3.
–\(\frac{3}{4}\)(8n + 12) = 3(n – 3)
Answer:
The value of n is: 0

Explanation:
The given equation is:
–\(\frac{3}{4}\) ( 8n + 12 ) = 3 ( n – 3 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
8n + 12 = –\(\frac{4}{3}\) × 3 ( n – 3 )
8n + 12 = –\(\frac{4}{3}\) \(\frac{3}{1}\) ( n – 3 )
8n + 12 = –\(\frac{3 × 4}{3 × 1}\) ( n – 3 )
8n + 12 = -4 ( n – 3 )
8n + 12 = -4n – 4 ( -3 )
8n + 12 = -4n + 12
8n + 4n =12 – 12
12n = 0
n = 0
Hence, from the above,
We can conclude that the value of n is: 0

Monitoring Progress

Solve the equation.

Question 4.
4(1 – p) = 4p – 4
Answer:
The value of p is: 1

Explanation:
The given equation is:
4 ( 1 -p ) = 4p – 4
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4 ( 1 ) – 4 ( p ) = 4p – 4
4 – 4p = 4p – 4
4p + 4p = 4 + 4
8p = 8
p = 8 ÷ 8
p = 1
Hence, from the above,
We can conclude that the value of p is: 1

Question 5.
6m – m = –\(\frac{5}{6}\)(6m – 10)
Answer:
The value of m is: \(\frac{5}{6}\)

Explanation:
The given equation is:
6m – m = –\(\frac{5}{6}\) ( 6m – 10 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5m = –\(\frac{5}{6}\) ( 6m – 10 )
5m = –\(\frac{5}{6}\) ( 6m ) – ( –\(\frac{5}{6}\) ( 10 ) )
5m = –\(\frac{5}{6}\) × \(\frac{6m}{1}\) + \(\frac{5}{6}\) \(\frac{10}{1}\)
5m = –\(\frac{5 × 6m}{6 × 1}\) + \(\frac{5 × 10}{6 × 1}\)
5m = -5m + \(\frac{25}{3}\)
5m + 5m = \(\frac{25}{3}\)
10m = \(\frac{25}{3}\)
m = \(\frac{25}{3}\) ÷ \(\frac{10}{1}\)
m = \(\frac{25}{3}\) × \(\frac{1}{10}\)
m = \(\frac{25}{30}\)
m = \(\frac{5}{6}\)
Hence, from the above,
We can conclude that the value of m is: \(\frac{5}{6}\)

Question 6.
10k + 7 = -3 – 10k
Answer:
The value of k is: –\(\frac{1}{2}\)

Explanation:
The given equation is:
10k + 7 = -3 – 10k
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
10k + 10k = -3 – ( +7 )
20k = -3 –
20k = -10
k = -10 ÷ 20
k = –\(\frac{1}{2}\)
Hence, from the above,
We can conclude that the value of k is: –\(\frac{1}{2}\)

Question 7.
3(2a – 2) = -2(3a – 3)
Answer:
The value of a is: 1

Explanation:
The given equation is:
3 ( 2a – 2 ) = -2 ( 3a – 3 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
By using the Distributive Property of Multiplication,
3 ( 2a ) – 3 ( 2 ) = -2 ( 3a ) + 2 ( 3 )
6a – 6 = -6a + 6
6a + 6a = 6 + 6
12a = 12
a = 12 ÷ 12
a = 1
Hence, from the above,
We can conclude that the value of a is: 1

Concept Summary

Steps for Solving Linear Equations
Here are several steps you can use to solve a linear equation. Depending on the equation, you may not need to use some steps.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 48
Step 1
Use the Distributive Property to remove any grouping symbols.
Step 2
Simplify the expression on each side of the equation.
Step 3
Collect the variable terms on one side of the equation and the constant terms on the other side.
Step 4
Isolate the variable.
Step 5
Check your solution.

Monitoring Progress

Question 8.
A boat travels upstream on the Mississippi River for 3.5 hours. The return trip only takes 2.5 hours because the boat travels 2 miles per hour faster downstream due to the current. How far does the boat travel upstream? Answer:
The distance the boat travel upstream is: 17.5 miles

Explanation:
It is given that a boat travels upstream on the Mississippi River for 3.5 hours. The return trip only takes 2.5 hours because the boat travels 2 miles per hour faster downstream due to the current.
Now,
Let x be the speed of the boat traveled upstream
We know that,
Speed = Distance ÷ Time
Distance = Speed × Time
It is given that the time taken by the boat traveled upstream is: 3.5 hours
So,
Distance traveled upstream = 3.5 × x = 3.5x
Now,
It is also given that the speed of the boat is 2 miles per hour faster downstream
So,
Distance traveled downstream by boat = 2.5 ( x + 2 )
SO,
As both the distances are the same,
3.5x = 2.5 ( x + 2 )
By using the Distributive Property of Multiplication,
3.5x = 2.5 ( x) + 2.5 ( 2 )
3.5x = 2.5x + 5
3.5x – 2.5x = 5
x = 5
So,
The distance traveled upstream by boat = 3.5x = 3.5 ( 5 )
= 17.5 miles per hour
Hence, from the above,
We can conclude that the distance traveled upstream by boat is: 17.5 miles per hour

Solving Equations with Variables on Both Sides 1.3 Exercises

Monitoring Progress and Modeling with Mathematics

In Exercises 3–16, solve the equation. Check your solution.

Question 1.
VOCABULARY Is the equation -2(4 – x) = 2x + 8 an identity? Explain your reasoning.
Answer:
-2 ( 4 – x ) = 2x + 8 is not an identity

Explanation:
The given equation is:
-2 ( 4 – x ) = 2x + 8
By using the Distributive Property of Multiplication,
-2 ( 4 ) + 2 ( x ) = 2x + 8
-8 + 2x = 2x + 8
2x – 8 = 2x + 8
As
LHS ≠ RHS
-2 ( 4 – x ) = 2x + 8  is not an identity

Question 2.
WRITING Describe the steps in solving the linear equation 3(3x – 8) = 4x + 6
Answer:
The value of x is: 6

Explanation:
The given equation is:
3 ( 3x – 8 ) = 4x + 6
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
Now,
By using the Distributive Property of Multiplication,
3 ( 3x ) – 3 ( 8 ) = 4x + 6
9x – 24 = 4x + 6
9x – 4x = 6 + 24
5x = 30
x = 30 ÷ 5
x = 6
Hence, from the above,
We can conclude that the value of x is: 6

Question 3.
15 – 2x = 3x

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q3

Question 4.
26 – 4s = 9s
Answer:
The value of s is: 2

Explanation:
The given equation is:
26 – 4s = 9s
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
26 = 9s + 4s
13s = 26
s = 26 ÷ 13
s = 2
Hence, from the above,
We can conclude that the value of s is: 2

Question 5.
5p – 9 = 2p + 12

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q5

Question 6.
8g + 10 = 35 + 3g
Answer:
The value of g is: 5

Explanation:
The given equation is:
8g + 10 = 35 + 3g
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
8g – 3g = 35 – 10
5g = 25
g = 25 ÷ 5
g = 5
Hence, from the above,
We can conclude that the value of g is: 5

Question 7.
5t + 16 = 6 – 5t

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q7

Question 8.
-3r + 10 = 15r – 8
Answer:
The value of r is: 1

Explanation:
The given equation is:
-3r + 10 = 15r – 8
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-3r – 15r = -10 – 8
-18r = -18
r = -18 ÷ ( -18 )
r = 1 [ since – ÷ – = + ]
Hence, from the above,
We can conclude that the value of r is: 1

Question 9.
7 + 3x – 12x = 3x + 1

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q9

Question 10.
w – 2 + 2w = 6 + 5w
Answer:
The value of w is: -4

Explanation:
The given equation is:
w – 2 + 2w = 6 + 5w
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
w + 2w -5w =6 + 2
-2w = 8
w = -8 ÷ 2
w = -4
Hence, from the above,
We can conclude that the value of w is: -4

Question 11.
10(g + 5) = 2(g + 9)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q11

Question 12.
-9(t – 2) = 4(t – 15)
Answer:
The value of t is: 6

Explanation:
The given equation is:
-9 ( t – 2 ) = 4 ( t – 15 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
Now,
By using the Distributive Property of Multiplication,
-9 ( t ) +  9 ( 2 ) = 4 ( t ) – 4 ( 15 )
-9t + 18 = 4t – 60
-9t – 4t = -60 – 18
-13t = -78
t = -78 ÷ ( -13 )
t = 6 [ Since  -÷ – = + ]
Hence, from the above,
We can conclude that the value of t is: 6

Question 13.
\(\frac{2}{3}\)(3x + 9) = -2(2x + 6)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q13

Question 14.
2(2t + 4) = \(\frac{3}{4}\)(24 – 8t)
Answer:
The value of t is: 1

Explanation:
The given equation is:
2 ( 2t + 4 ) = \(\frac{3}{4}\) ( 24 – 8t )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
By using the Distributive Property of Multiplication,
2 ( 2t ) + 2 ( 4 ) = \(\frac{3}{4}\) ( 24 ) – 8t  (\(\frac{3}{4}\) )
4t + 8 = \(\frac{3}{4}\) × \(\frac{24}{1}\) – \(\frac{8t}{1}\) × \(\frac{3}{4}\)
4t + 8 = \(\frac{3 × 24}{4 × 1}\) – \(\frac{3 × 8t}{4 × 1}\)
4t + 8 = \(\frac{18}{1}\) – \(\frac{6t}{1}\)
4t + 8 = 18 – 6t
4t + 6t = 18 – 8
10t = 10
t = 10 ÷ 10
t = 1
Hence, from the above,
We can conclude that the value of t is: 1

Question 15.
10(2y + 2) – y = 2(8y – 8)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q15

Question 16.
2(4x + 2) = 4x – 12(x – 1)
Answer:
The value of x is: \(\frac{1}{2}\)

Explanation:
The given equation is:
2 ( 4x + 2 ) = 4x – 12 ( x – 1 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Now,
By using the Distributive Property of Multiplication,
2 ( 4x ) + 2 ( 2 ) = 4x – 12 ( x ) + 12 ( 1 ) [ Since – × – = + ]
8x + 4 = 4x – 12x + 12
8x + 4 =12 – 8x
8x + 8x = 12 – 4
16x = 8
x = 8 ÷ 16
x = \(\frac{1}{2}\)
Hence, from the above,
We can conclude that the value of x is: \(\frac{1}{2}\)

Question 17.
MODELING WITH MATHEMATICS
You and your friend drive toward each other. The equation 50h = 190 – 45h represents the number h of hours until you and your friend meet. When will you meet?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q17

Question 18.
MODELING WITH MATHEMATICS
The equation 1.5r + 15 = 2.25r represents the number r of movies you must rent to spend the same amount at each movie store. How many movies must you rent to spend the same amount at each movie store?
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 49

Answer:
The number of movies you rent to spend the same amount at each movie store is: 20

Explanation:
It is given that
The equation 1.5r + 15 = 2.25r represents the number r of movies you must rent to spend the same amount at each movie store.
Now,
We have to find the value of r to find the number f movies you must rent to spend the same amount at each movie store
So,
The given equation is:
1.5r + 15 = 2.25r
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2.25r – 1.5r = 15
0.75r = 15
\(\frac{75}{100}\)r = 15
r = 15 × \(\frac{100}{75}\)
r = \(\frac{15}{1}\) × \(\frac{100}{75}\)
r = \(\frac{15 × 100}{1 × 75}\)
r = 20
Hence, from the above,
We can conclude that the number of movies you rent to spend the same amount at each movie store is: 20

In Exercises 19–24, solve the equation. Determine whether the equation has one solution, no solution, or infinitely many solutions.

Question 19.
3t + 4 = 12 + 3t

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q19

Question 20.
6d + 8 = 14 + 3d
Answer:
The value of d is: 2

Explanation:
The given equation is:
6d + 8 = 14 + 3d
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
6d – 3d = 14 – 8
3d = 6
d = 6 ÷ 3
d = 2
Hence, from the above,
We can conclude that the value of d is: 2

Question 21.
2(h + 1) = 5h – 7

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q21

Question 22.
12y + 6 = -6(2y + 1)
Answer:
The value of y is: –\(\frac{1}{2}\)

Explanation:
The given equation is:
12y + 6 = -6 ( 2y + 1 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
By using the Distributive Property of Multiplication,
12y + 6 = -6 ( 2y ) – 6 ( 1 )
12y + 6 = -12y – 6
12y + 12y = -6 – ( +6 )
24y = -6 – 6
24y = -12
y = -12 ÷ 24
y = –\(\frac{1}{2}\)
Hence, from the above,
We can conclude that the value of y is: –\(\frac{1}{2}\)

Question 23.
3(4g + 6) = 2(6g + 9)

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q23

Question 24.
5(1 + 2m) = \(\frac{1}{2}\)(8 + 20m)
Answer:
m has indefinite solutions

Explanation:
The given equation is:
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
By using the Distributive Property of Multiplication,
5 ( 1 ) + 5 ( 2m ) = \(\frac{1}{2}\) ( 8 ) + \(\frac{1}{2}\) ( 20m )
2 ( 5 + 10m ) = 8 + 20m
2 ( 5 ) + 2 ( 10m ) = 8 + 20m
10 + 20m = 8 + 20m
20m – 20m = 8 – 10
20m – 20m = -2
As  m has the same coefficients and have the opposite signs, m has indefinite solutions
Hence, from the above,
We can conclude that the equation has the indefinite solutions

ERROR ANALYSIS
In Exercises 25 and 26, describe and correct the error in solving the equation.

Question 25.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 50

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q25

Question 26.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 51

Answer:
The given equation is:
6 ( 2y + 6 ) = 4 ( 9 + 3y )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
Now,
By using the Distributive Property of Multiplication,
6 ( 2y ) + 6 ( 6 ) = 4 ( 9 ) + 4 ( 3y )
12y + 36 = 36 + 12y
12y – 12y = 36 – 36
0 = 0
As the coefficients of y are zero, the equation has no solution
Hence, from the above,
We can conclude that there is no error in the analysis of the equation.

Question 27.
MODELING WITH MATHEMATICS
Write and solve an equation to find the month when you would pay the same total amount for each Internet service.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 52

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q27

Question 28.
PROBLEM-SOLVING
One serving of granola provides 4% of the protein you need daily. You must get the remaining 48 grams of protein from other sources. How many grams of protein do you need daily?
Answer:
The number of grams of protein you need daily is: 50 grams

Explanation:
It is given that one serving of granola provides 4% of the protein you need daily. You must get the remaining 48 grams of protein from other sources.
So,
Let the number of grams of protein you need daily be: x
So,
The number of grams of protein you need daily = 4 % of x + 48
We know that,
100%  = 1
So,
4 % = 0.04
So,
The number of grams of protein you need daily = 0.04x + 48
x = 0.04x + 48
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x – 0.04x = 48
0.96x = 48
\(\frac{96}{100}\)x = 48
x = 48 × \(\frac{100}{96}\)
x = \(\frac{48}{1}\) × \(\frac{100}{96}\)
x = \(\frac{48 × 100}{1 × 96}\)
x = \(\frac{50}{1}\)
x = 50 grams
Hence, from the above,
We can conclude that the number of proteins you need daily is: 50 grams

USING STRUCTURE
In Exercises 29 and 30, find the value of r.

Question 29.
8(x + 6) – 10 + r = 3(x + 12) + 5x

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q29

Question 30.
4(x – 3) – r + 2x = 5(3x – 7) – 9x
Answer:
The value of r is: 23

Explanation:
The given equation is:
4 ( x – 3 ) – r + 2x = 5 ( 3x – 7 ) – 9x
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
By using the Distributive Property of Multiplication,
4x – 4 ( 3 ) – r + 2x = 5 ( 3x ) – 5 ( 7 ) – 9x
4x – 12 – r + 2x = 15x – 35 – 9x
6x – 12 – r = 6x – 35
r = 6x – 6x – 12 + 35
r = 23
Hence, from the above,
We can conclude that the value of r is: 23

MATHEMATICAL CONNECTIONS
In Exercises 31 and 32, the value of the surface area of the cylinder is equal to the value of the volume of the cylinder. Find the value of x. Then find the surface area and volume of the cylinder.

Question 31.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 53

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q31

Question 32.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 54
Answer:
The Surface Area of the cylinder is: 461.49 cm²
The volume of the cylinder is: 488.58 cm³

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 54
From the above figure,
The radius of the cylinder is: 7\(\frac{1}{5}\) feet
The height of the cylinder is: x feet
It is given that the Total Surface Area of the cylinder and the volume of the cylinder are equal.
We know that,
The Surface Area of the cylinder = 2πr² + 2πrh
The volume of the cylinder = πr²h
The value of π is: 3.1416
Now,
The representation of 7\(\frac{1}{5}\) in the improper fraction form is: \(\frac{36}{5}\)
So,
2πr² + 2πrh = πr²h
[ 2 × 3.1416 × \(\frac{36}{5}\) × \(\frac{36}{5}\) ] + [ 2 × 3.1416 × \(\frac{36}{5}\) × x ] = [3.1416 × latex]\frac{36}{5}[/latex] × \(\frac{36}{5}\) × x ]
325.72 + 45.23x = 162.86x
162.86x – 45.23x = 325.72
117.63x = 325.72
x = 2.76
x = 3
So,
The Surface Area of the cylinder = 2πr² + 2πrh
= [ 2 × 3.1416 × \(\frac{36}{5}\) × \(\frac{36}{5}\) ] + [ 2 × 3.1416 × \(\frac{36}{5}\) × x ]
= 325.72 + 45.23x
= 325.72 + 45.23 ( 3 )
= 461.49 cm²
The volume of the cylinder = πr²h
= [3.1416 × latex]\frac{36}{5}[/latex] × \(\frac{36}{5}\) × x ]
= 162.86x
= 162.86 ( 3 )
= 488.58 cm³
Hence, from the above,
We can conclude that
The Surface Area of the cylinder is: 461.49 cm²
The volume of the cylinder is: 488.58 cm³

Question 33.
MODELING WITH MATHEMATICS
A cheetah that is running 90 feet per second is 120 feet behind an antelope that is running 60 feet per second. How long will it take the cheetah to catch up to the antelope?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q33

Question 34.
MAKING AN ARGUMENT
A cheetah can run at top speed for only about 20 seconds. If an antelope is too far away for a cheetah to catch it in 20 seconds, the antelope is probably safe. Your friend claims the antelope in Exercise 33 will not be safe if the cheetah starts running 650 feet behind it. Is your friend correct? Explain.
Answer:
Your friend is not correct

Explanation:
It is given that a cheetah can run at top speed for only about 20 seconds. If an antelope is too far away for a cheetah to catch it in 20 seconds, the antelope is probably safe. Your friend claims the antelope in Exercise 33 will not be safe if the cheetah starts running 650 feet behind it.
Let the distance of running antelope be x.
Let ‘t’ be the time taken
So,
The distance of running Antelope is:
x = 650 + 60t
The cheetah must arrive at the same position to catch the antelope
So,
x = 90t
Now,
90t = 650 + 60t
90t – 60t = 650
30t = 650
t = 650 ÷ 30
t = 21.7 seconds
But it is given that the cheetah has to reach the same position as the antelope in 20 seconds
But according to the calculation, it takes 21.7 seconds
So,
According to your friend, the antelope is not safe if the cheetah is running 650 meters behind it.
Hence, from the above,
We can conclude that your friend is not correct.

REASONING
In Exercises 35 and 36, for what value of a is the equation an identity? Explain your reasoning.

Question 35.
a(2x + 3) = 9x + 15 + x

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q35

Question 36.
8x – 8 + 3ax = 5ax – 2a
Answer:
The given equation becomes an identity at a = 4

Explanation:
The given equation is:
8x – 8 + 3ax = 5ax – 2a
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5ax – 3ax = 8x – 8 – 2a
2ax = 8 ( x – 1 ) – 2a
2ax + 2a = 8x – 8
Equate the like coefficients of x and the like constants in both LHS and RHS
So,
2ax = 8x                                   2a = -8
a = 8x ÷ 2x                               a = -8 ÷ 2
a = 4                                         a = -4
Now,
At a = 4,
The equation becomes
8x – 8 + 3ax = 5ax – 2a
8x – 8 + 3x ( 4 ) = 5x ( 4 ) -2 ( 4 )
8x – 8 + 12x = 20x – 8
20x – 8 = 20x – 8
Hence,
At a =4,
The given equation is an Identity
At a = -4,
The equation becomes
8x – 8 + 3ax = 5ax – 2a
8x – 8 + 3x ( -4 ) = 5x ( -4 ) -2 ( -4 )
8x – 8 – 12x = -20x + 8
-4x – 8 = -20x + 8
Hence,
At a = -4, the given equation is not an Identity
Hence, from the above,
We can conclude that the given equation is an Identity at a = 4

Question 37.
REASONING
Two times the greater of two consecutive integers is 9 less than three times the lesser integer. What are the integers?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q37

Question 38.
HOW DO YOU SEE IT?
The table and the graph show information about students enrolled in Spanish and French classes at a high school.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 55
a. Use the graph to determine after how many years there will be equal enrollment in Spanish and French classes.
Answer:
The year where there will be equal enrollment in Spanish and French classes is: 6

Explanation:
The given table and the graph of the students for the Spanish and French classes are:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 55
So,
From the above table,
To find the year where there is equal enrollment in both Spanish and French, we have to find the point in the graph that the two points of Spanish and French intersect
So,
From the above graph,
The point that is intersecting is at 6th year
Hence, from the above,
We can conclude that there is an equal enrollment of students in the 6th year in both Spanish and French classes

b. How does the equation 355 – 9x = 229 + 12x relate to the table and the graph? How can you use this equation to determine whether your answer in part (a) is reasonable?
Answer:
The given equation
355 – 9x = 229 + 12x
represents the total number of students enrolled in the different years in both Spanish and French classes
Now,
In part (a),
We observed that there is an equal enrollment of the students at 6th year in both Spanish and French classes
So,
Here,
x is: The number of years
So,
In part (a),
x = 6
Now,
Substitute x = 6 in the given equation.
Now,
355 – 9x = 229 + 12x
355 – 9 ( 6 ) = 229 + 12 ( 6 )
355 – 54 = 229 + 72
301 = 301
As
LHS = RHS
We can say that the answer is reasonable in part (a)

Question 39.
WRITING EQUATIONS
Give an example of a linear equation that has (a) no solution and (b) infinitely many solutions. Justify your answers.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q39

Question 40.
THOUGHT-PROVOKING
Draw a different figure that has the same perimeter as the triangle shown. Explain why your figure has the same perimeter.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 56

Answer:

Maintaining Mathematical Proficiency

Order the values from least to greatest.

Question 41.
9, | -4|, -4, 5, | 2 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q41

Question 42.
| -32 |, 22, -16, -| 21 |, | -10 |
Answer:
We know that,
| -x | = x
| x | = x
So,
| -32 | = 32
| 21 | = 21
| -10 | = 10
Hence,
The order of the values from the least to the greatest is:
-21, -16, 10, 22, 32

Question 43.
-18, | -24 |, -19, | -18 |, | 22 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.3-Q43

Question 44.
-| – 3 |, | 0 |, -1, | 2 |, -2
Answer:
We know that,
| -x | = x
| x | = x
So,
| -3 | = 3
| 0 | = 0
| 2 | = 2
Hence,
The order of the numbers from the least to the greatest is:
-3, -2, -1, 0, 2

Solving Linear Equations Study Skills: Completing

1.1-1.3 What Did You Learn

Core Vocabulary

Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 57

Core Concepts

Section 1.1
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 58

Section 1.2

Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 59

Section 1.3

Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 60

Mathematical Practices

Question 1.
How did you make sense of the relationships between the quantities in Exercise 46 on page 9?
Answer:
In Exercise 46 on page 9,
There is a layout of the tatami mat which comprises the four identical rectangular mats and the one square mat.
it is also given that the area of the square mat is half of one of the rectangular mats
Now,
We know that,
The area of the square mat = Area² [ Since all the sides of the square are equal ]
The area of the rectangular mat = Length × Width
So,
According to the given condition,
The relation between the area of the square mat and one of the rectangular mat is:
Area of the square mat = \(\frac{1}{2}\) Area of one of the rectangular mat
Side² = \(\frac{1}{2}\) ( Length × Width )

Question 2.
What is the limitation of the tool you used in Exercises 25–28 on page 16?
Answer:
The limitations of the tool you used in Exercises 25 – 28 on page 16 are:
A) The calculated values and the values measured using the tool will be different
B) We won’t get the exact values of the angle measures using the tool

Question 3.
What definition did you use in your reasoning in Exercises 35 and 36 on page 24?
Answer:
The definition you used in your reasoning in Exercises 35 and 36 on page 24 is:
Make the like coefficients of the same variable in both LHS and RHS equal so that we get the value of the variable.

Study Skills

Completing Homework Efficiently

Before doing homework, review the Core Concepts and examples. Use the tutorials at BigIdeasMath.com for additional help.

Complete homework as though you are also preparing for a quiz. Memorize different types of problems, vocabulary, rules, and so on.
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 61

Solving Linear Equations 1.1-1.3 Quiz

Solve the equation. Justify each step. Check your solution. (Section 1.1)

Question 1.
x + 9 = 7
Answer:
The value of x is -2

Explanation:
The given equation is:
x + 9 = 7
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x = 7 –  ( +9 )
x = 7 – 9
x = -2
Hence, from the above,
We can conclude that the value of x is: -2

Question 2.
8.6 = z – 3.8
Answer:
The value of z is: 12.4

Explanation:
The given equation is:
8.6 = z – 3.8
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
z = 8.6 + 3.8
z = 12.4
Hence, from the above,
We can conclude that the value of z is: 12.4

Question 3.
60 = -12r
Answer:
The value of r is:  -5

Explanation:
The given equation is:
60 = -12r
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
r = 60 ÷ ( -12 )
r = -60 ÷ 12
r = -5
Hence, from the above,
We can conclude that the value of r is: -5

Question 4.
\(\frac{3}{4}\)p = 18
Answer:
The value of p is: 24

Explanation:
The given equation is:
\(\frac{3}{4}\)p = 18
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
p = 18 × \(\frac{4}{3}\)
p = \(\frac{18}{1}\) × \(\frac{4}{3}\)
p = \(\frac{18 × 4}{1 × 3}\)
p = \(\frac{24}{1}\)
p = 24
Hence, from the above,
We can conclude that the value of p is: 24

Solve the equation. Check your solution. (Section 1.2)

Question 5.
2m – 3 = 13
Answer:
The value of m is: 8

Explanation:
The given equation is:
2m – 3 = 13
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2m = 13 + 3
2m = 16
m = 16 ÷ 2
m = 8
Hence, from the above,
We can conclude that the value of m is: 8

Question 6.
5 = 10 – v
Answer:
The value of v is: 5

Explanation:
The given equation is:
5 = 10 – v
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
v= 10 – 5
v = 5
Hence, from the above,
We can conclude that the value of v is: 5

Question 7.
5 = 7w + 8w + 2
Answer:
The value of w is: \(\frac{1}{5}\)

Explanation:
The given equation is:
5 = 7w + 8w + 2
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5 – 2 = 7w + 8w
15w = 3
w = 3 ÷ 15
w = \(\frac{1}{5}\)
Hence, from the above,
We can conclude that the value of w is: \(\frac{1}{5}\)

Question 8.
-21a + 28a – 6 = -10.2
Answer:
The value of a is: –\(\frac{3}{5}\)

Explanation:
The given equation is:
-21a + 28a  – 6 = -10.2
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-21a + 28a = -10.2 + 6
7a = -4.2
a = -4.2 ÷ 7
a= –\(\frac{42}{10}\) ÷ 7
a = –\(\frac{42}{10}\) × \(\frac{1}{7}\)
a = –\(\frac{42 × 1}{10 × 7}\)
a = – \(\frac{6}{10}\)
a = –\(\frac{3}{5}\)
Hence, from the above,
We can conclude that the value of a is: –\(\frac{3}{5}\)

Question 9.
2k – 3(2k – 3) = 45
Answer:
The value of k is: -9

Explanation:
The given equation is:
2k – 3 ( 2k – 3 ) = 45
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
SO,
2k – 3 ( 2k ) + 3 ( 3 ) = 45
2k – 6k + 9 = 45
2k – 6k = 45 – 9
-4k = 36
k = 36 ÷ -4
k = -9
Hence, from the above,
We can conclude that the value of k is: -9

Question 10.
68 = \(\frac{1}{5}\)(20x + 50) + 2
Answer:
The value of x is: 14

Explanation:
The given equation is:
68 = \(\frac{1}{5}\) [ 20x + 50 ] + 2
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
68 – 2 = \(\frac{1}{5}\) [ 20x + 50 ]
66 = \(\frac{1}{5}\) [ 20x + 50 ]
66 × 5 = 20x + 50
330 = 20x + 50
20x = 330 – 50
20x = 280
x = 280 ÷ 20
x = 14
Hence, from the above,
We can conclude that the value of x is: 14

Solve the equation. (Section 1.3)

Question 11.
3c + 1 = c + 1
Answer:
The value of c is: 0

Explanation:
The given equation is:
3c + 1 = c + 1
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
3c – c = 1 – 1
2c = 0
c = 0
Hence, from the above,
We can conclude that the value of c is: 0

Question 12.
-8 – 5n = 64 + 3n
Answer:
The value of n is: -9

Explanation:
The given equation is:
-8 – 5n = 64 + 3n
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-8 – 64 = 3n + 5n
-72 = 8n
n = -72 ÷ 8
n = -9
Hence, from the above,
We can conclude that the value of n is: -9

Question 13.
2(8q – 5) = 4q
Answer:
The value of q is: \(\frac{5}{6}\)

Explanation:
Te given equation is:
2 ( 8q – 5 ) = 4q
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2 ( 8q ) – 2 ( 5 ) = 4q
16q – 10 = 4q
16q – 4q = 10
12q = 10
q = 10 ÷ 12
q = \(\frac{5}{6}\)
Hence, from the above,
We can conclude that the value of q is: \(\frac{5}{6}\)

Question 14.
9(y – 4) – 7y = 5(3y – 2)
Answer:
The value of y is: -2

Explanation:
The given equation is:
9 ( y – 4 ) – 7y = 5 ( 3y – 2 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
9 ( y ) – 9 ( 4 ) – 7y = 5 ( 3y ) – 5 ( 2 )
9y – 36 – 7y = 15y – 10
2y – 36 = 15y – 10
15y – 2y = 10 – 36
13y = -26
y = -26 ÷ 13
y = -2
Hence, from the above,
We can conclude that the value of y is: -2

Question 15.
4(g + 8) = 7 + 4g
Answer:
The given equation has no solution

Explanation:
The given equation is:
4 ( g + 8 ) = 7 + 4g
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,the given equation has no solution
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4 ( g ) + 4 ( 8 ) = 7 + 4g
4g + 32 = 7 + 4g
4g – 4g + 7 = 32
7 = 32
Hence, from the above,
We can conclude that the given equation has no solution.

Question 16.
-4(-5h – 4) = 2(10h + 8)
Answer:
The value of h is: 0

Explanation:
The given equation is:
-4 ( 5h – 4 ) = 2 ( 10h + 8 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-4 ( 5h ) + 4 ( 4 ) = 2 ( 10h ) + 2 ( 8 )
-20h + 16 = 20h + 16
-20h – 20h = 1 – 16
-40h =0
h = 0
Hence, from the above,
We can conclude that the value of h is: 0

Question 17.
To estimate how many miles you are from a thunderstorm, count the seconds between when you see lightning and when you hear thunder. Then divide by 5. Write and solve an equation to determine how many seconds you would count for a thunderstorm that is 2 miles away. (Section 1.1)
Answer:

Question 18.
You want to hang three equally-sized travel posters on a wall so that the posters on the ends are each 3 feet from the end of the wall. You want the spacing between posters to be equal. Write and solve an equation to determine how much space you should leave between the posters. (Section 1.2)
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 62

Answer:
The space you should leave between the posters is: \(\frac{3}{2}\) ft

Explanation:
The given figure is:
Big Ideas Math Answers Algebra 1 Chapter 1 Solving Linear Equations 62
It is given that you want to hang three equally-sized travel posters on a wall so that the posters on the ends are each 3 feet from the end of the wall. You want the spacing between posters to be equal.
So,
From the figure,
The total space = 15 ft
The total spacing covered at the ends = 3 + 3 = 6 ft
Let the space between the equally spaced posters be x
So,
The total spacing between the travel posters = 2x + 2x + 2x = 6x ft
SO,
The total space = ( The total spacing covered at the ends ) + ( The total spacing between the travel posters )
15 = 6 + 6x
6x = 15 – 6
6x = 9
x = 9 ÷ 6
x = \(\frac{3}{2}\) ft
Hence, from the above,
We can conclude that the spacing between the travel posters is: \(\frac{3}{2}\) ft

Question 19.
You want to paint a piece of pottery at an art studio. The total cost is the cost of the piece plus an hourly studio fee. There are two studios to choose from. (Section 1.3)
a. After how many hours of the painting are the total costs the same at both studios? Justify your answer.
b. Studio B increases the hourly studio fee by $2. How does this affect your answer in part (a)? Explain.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 63

Answer:
a)
It is given that,
The total cost = Cost of the vase + The hourly studio fee
Let the number of hours be x
So,
The total cost for studio A = 10 + 8x
The total cost of studio B = 16 + 6x
It is given that the total costs are the same
So,
10 + 8x = 16 + 6x
8x – 6x = 16 – 10
2x = 6
x = 6 ÷ 2
x = 3
Hence, from the above,
We can conclude that the total cost will be the same after 3 hours for both the studios

b)
It is given that the studio B increases the hourly studio fee by $2
So,
The total hourly studio fee for studio B = 6 + 2 = $8
So,
Now,
As in part (a), the same process will be repeated but in the studio B’s hourly fee of $6, we have to put $8
So,
10 + 8x = 16 + 8x
8x – 8x = 6 – 10
10 = 16
Hence, from the above,
We can conclude that the value of x has no solutions

Lesson 1.4 Solving Absolute Value Equations

Essential Question

How can you solve an absolute value equation?
EXPLORATION 1
Solving an Absolute Value Equation Algebraically
Work with a partner. Consider the absolute value equation
| x + 2 | = 3.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 64
a. Describe the values of x + 2 that make the equation true. Use your description to write two linear equations that represent the solutions of the absolute value equation.
Answer:
We know that,
| x | = x
-| x | = -x
So,
| x + 2 | = 3
x + 2 = 3
x = 3 – 2
x = 1
Now,
-| x + 2 | = 3
| x + 2  | = -3
-x – 2 = -3
-x = -3 + 2
-x = -1
x = 1
So,
The values of x + 2 that make the equation true is: 3 and 3
The value of x is: 1 and 1

b. Use the linear equations you wrote in part (a) to find the solutions of the absolute value equation.
Answer:
We know that,
| x | = x
-| x | = -x
So,
| x + 2 | = 3
x + 2 = 3
x = 3 – 2
x = 1
Now,
-| x + 2 | = 3
-| x + 2  | = -3
-x – 2 = -3
-x = -3 + 2
-x = -1
x = 1
So,
The solutions of | x + 2 | are: 1 and 1

c. How can you use linear equations to solve an absolute value equation?
Answer:
We use linear equations to solve an absolute value equation by using the following properties. They are:
A) | x | = x
B) -| x | = -x

EXPLORATION 2
Solving an Absolute Value Equation Graphically
Work with a partner.
Consider the absolute value equation
| x + 2 | = 3.
a. On a real number line, locate the point for which x + 2 = 0.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 64.1
Answer:
The given equation is:
x + 2 = 0
x = 0 – 2
x = -2
So,
On a real number line, we have to locate the point x = -2
Hence,
The point we have to locate on the real number line is:

b. Locate the points that are 3 units from the point you found in part (a). What do you notice about these points?
Answer:
From part (a).
We found that x = -2
Now,
To locate the points that are 3 units away or 3 units behind from the point you found in part (a), i.e., x = -2
We know that,
3 units away imply ” Add 3 ”
3 units behind imply ” Subtract 3 ”
Now,
We have to add 3 and subtract 3 to the point we obtained in part (a)
So,
When we add 3 to x = -2,
x = -2 + 3
x =1
When we subtract 3 from x = -2,
x = -2 – 3
x = -5
Hence,
The points we have to locate in the real number line are: 1 and -5
So,
The real number line with the located points is:

c. How can you use a number line to solve an absolute value equation?
Answer:
The given absolute value equation is:
| x + 2 | = 3
We know that,
| x | = x
-| x | = -x
So,
| x + 2 | = 3
x + 2 = 3
x = 3 – 2
x = 1
– | x + 2 | = -3
-x – 2 = -3
-x = -3 + 2
-x = -1
x = 1
So,
The values we have to locate in the number line is:

EXPLORATION 3
Solving an Absolute Value Equation Numerically

Work with a partner. Consider the absolute value equation
| x + 2 | = 3.
a. Use a spreadsheet, as shown, to solve the absolute value equation.
b. Compare the solutions you found using the spreadsheet with those you found in Explorations 1 and 2. What do you notice?
c. How can you use a spreadsheet to solve an absolute value equation?
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 65

Communicate Your Answer

Question 4.
How can you solve an absolute value equation?
Answer:
We can solve the absolute equation by using the following properties. They are:
A) | x| = x
B) – | x | = -x

Question 5.
What do you like or dislike about the algebraic, graphical, and numerical methods for solving an absolute value equation? Give reasons for your answers.
Answer:
The algebraic, numerical, and graphical methods have their own advantages in their own perspective.
The algebraic methods used to solve the linear equations whereas the graphical method used to indicate the linear equations.
The numerical method is applicable for mathematical operations

1.4 Lesson

Monitoring Progress

Solve the equation. Graph the solutions, if possible.

Question 1.
| x | = 10
Answer:
The value of x is: 10

Explanation:
The given absolute value equation is:
| x | = 10
We know that,
| x | = x
So,
x = 10
Hence, from the above,
We can conclude that the value of x is: 10

Question 2.
| x – 1 | = 4
Answer:
The value of x is: 5

Explanation:
The given absolute value equation is:
| x – 1 | = 4
We know that,
| x | = x
So,
x – 1 = 4
x = 4 + 1
x = 5
Hence, from the above,
We can conclude that the value of x is: 5

Question 3.
| 3 + x | = -3
Answer:
The value of x is: -6

Explanation:
The given absolute value equation is:
| 3 + x | = -3
We know that,
| x | = x
So,
x + 3 = -3
x = -3 – 3
x = -6
Hence, from the above,
We can conclude that the value of x is: -6

Solve the equation. Check your solutions.

Question 4.
| x – 2 | + 5 = 9
Answer:
The value of x is: 6

Explanation:
The given absolute value equation is:
| x – 2 | + 5 = 9
| x – 2 | = 9 – 5
| x – 2 | = 4
We know that,
| x | = x
So,
x – 2 = 4
x = 4 + 2
x = 6
Hence, from the above,
We can conclude that the value of x is: 6

Question 5.
4 | 2x + 7 | = 16
Answer:
The value of x is: –\(\frac{3}{2}\)

Explanation:
The given absolute value equation is:
4 | 2x + 7 | = 16
| 2x + 7 | = 16 ÷ 4
| 2x + 7| = 4
We know that,
| x | = x
So,
2x + 7 = 4
2x = 4 – 7
2x = -3
x = –\(\frac{3}{2}\)
Hence, from the above,
We can conclude that the value of x is: –\(\frac{3}{2}\)

Question 6.
-2 | 5x – 1 | – 3 = -11
Answer:
The value of x is: 1

Explanation:
The given absolute value equation is:
-2 | 5x – 1 | – 3 = -11
-2 | 5x – 1 | = -11 + 3
-2 | 5x – 1 | = -8
| 5x – 1 | = -8 ÷ ( -2 )
| 5x – 1 | = 4
We know that,
| x | = x
So,
5x – 1 = 4
5x = 4 + 1
5x = 5
x = 5 ÷ 5
x = 1
Hence, from the above,
We can conclude that the value of x is: 1

Question 7.
For a poetry contest, the minimum length of a poem is 16 lines. The maximum length is 32 lines. Write an absolute value equation that represents the minimum and maximum lengths.
Answer:
The minimum value length is: 16
The maximum length is: 32

Explanation:
It is given that for a poetry contest, the minimum length of a poem is 16 lines. The maximum length is 32 lines.
So,
The absolute value equation that represents the minimum length of a poem = | The minimum length of a poem |
= | 16 |
= 16
The absolute value equation that represents the maximum length of a poem = | The maximum length of a poem |
= | 32 |
= 32
Hence, from the above,
We can conclude that
The minimum value length is: 16
The maximum length is: 32

Solve the equation. Check your solutions.

Question 8.
| x + 8 | = | 2x + 1 |
Answer:
The value of x is: 7

Explanation:
The given absolute value equation is:
| x + 8 | = | 2x + 1 |
We know that,
| x | = x
So,
x + 8 = 2x + 1
2x – x = 8 – 1
x = 7
Hence from the above,
We can conclude that the value of x is: 7

Question 9.
3 | x – 4 | = | 2x + 5 |
Answer:
The value of x is: 17

Explanation:
The given absolute equation is:
3 | x – 4 | = | 2x + 5 |
We know that,
| x |  = x
So,
3 ( x – 4 ) = 2x + 5
3 ( x ) – 3 ( 4 ) = 2x + 5
3x – 12 = 2x + 5
3x – 2x = 5 + 12
x = 17
Hence, from the above,
We can conclude that the value of x is: 17

Solve the equation. Check your solutions.

Question 10.
| x + 6 | = 2x
Answer:
The value of x is: 6

Explanation:
The absolute value equation is:
| x + 6 | = 2x
We know that,
| x | = x
So,
x + 6 = 2x
2x – x = 6
x = 6
Hence, from the above,
We can conclude that the value of x is: 6

Question 11.
| 3x – 2 | = x
Answer:
The value of x is: 1

Explanation:
The given absolute value equation is:
| 3x – 2 | = x
We know that,
| x | = x
So,
3x – 2 = x
Soo,
3x – x = 2
2x = 2
x = 2 ÷ 2
x = 1
Hence, from the above,
We can conclude that the value of x is: 1

Question 12.
| 2 + x | = | x – 8 |
Answer:
The given absolute value equation has no solution

Explanation:
The given absolute value equation is:
| 2 + x | = | x – 8 |
We know that,
| x | = x
So,
2 + x = x – 8
2 = x – x – 8
2 = -8
Hence, from the above,
We can conclude that the given absolute value equation has no solution

Question 13.
| 5x – 2 | = | 5x + 4 |
Answer:
The given absolute value equation has no solution

Explanation:
The given absolute value equation is:
| 5x – 2 | = | 5x + 4 |
We know that,
| x | = x
So,
5x – 2 = 5x + 4
5x – 5x – 2 = 4
-2 = 4
Hence, from the above,
We can conclude that the given absolute value equation has no solution

Solving Absolute Value Equations 1.4 Exercises

Vocabulary and Core Concept Check

Question 1.
VOCABULARY
What is an extraneous solution?
Answer:
Extraneous solutions are values that we get when solving equations that are not really solutions to the equation.
Example for extraneous solution:
| 5x – 2 | = | 5x + 4 |

Question 2.
WRITING
Without calculating, how do you know that the equation | 4x – 7 | = -1 has no solution?
Answer:
The given absolute value equation is:
| 4x – 7 | = -1
We know that,
An absolute value can never equal a negative number.
So,
By the above,
We can say that
| 4x – 7 | must not equal to a negative number.
Hence, from the above,
We can conclude that | 4x – 7 | = -1 has no solution without calculating its solution

Monitoring Progress and Modeling with Mathematics

In Exercises 3−10, simplify the expression.

Question 3.
| -9 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q3

Question 4.
– | 15 |
Answer:
The value of -| 15 | is: -15

Explanation:
The given absolute value is: -| 15 |
We know that,
| x | = x
| -x | = x
-| x | = -x
So,
-| 15 | = -15
Hence, from the above,
We can conclude that the value of -| 15 | is: -15

Question 5.
| 14 | – | -14 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q5

Question 6.
| -3 | + | 3 |
Answer:

The value of | -3 | + | 3 | is: 6

Explanation:
The given absolute value expression is:
| -3 | + | 3 |
We know that,
| x | = x
| -x | = x
-| x | = -x
So,
| -3 | + | 3 |
= 3 + 3
= 6
Hence, from the above,
We can conclude that the value of | -3 | + | 3 | is: 6

Question 7.
– | -5 • (-7) |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q7

Question 8.
| -0.8 • 10 |
Answer:
The value of | -0.8 ⋅ 10 | is: 8

Explanation:
The given absolute value expression is:
| -0.8 ⋅ 10 |
We know that,
| x | = x
| -x | = x
-| x | = -x
So,
| -0.8 ⋅ 10 |
= | – ( 8 ⁄ 10 ) ⋅ ( 10 ⁄ 1 ) |
= | – ( 8 × 10 ) ⁄ ( 10 × 1 ) |
= | -8 |
= 8
hence, from the above,
We can conclude that the value of | -0.8 ⋅ 10 | is: 8

Question 9.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 66

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q9

Question 10.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 67
Answer:
The value of | -12 ⁄ 4 | is: 3

Explanation:
The given absolute value expression is: | -12 ⁄ 4 |
We know that,
| x | = x
| -x | = x
– | x | = -x
So,
| -12 ⁄ 4 | = | -3 |
= 3
Hence, from the above,
We can conclude that the value of | -12 ⁄ 4 | is: 3

In Exercises 11−24, solve the equation. Graph the solution(s), if possible.

Question 11.
| w | = 6

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q11

Question 12.
| r | = -2
Answer:
The absolute value of a number must be greater than or equal to 0 and can not be equal to -2.
Hence,
The given absolute eqution has no solution

Question 13.
| y | = -18

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q13

Question 14.
| x | = 13
Answer:
The value of x is: 13 or -13

Explanation:
The given absolute value equation is:
| x | = 13
We know that,
|x | = x
– | x | = -x
So,
| x | = 13 or – 13
Hence, from the above,
We can conclude that the value of x is: 13 or -13

Question 15.
| m + 3 | = 7

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q15

Question 16.
| q – 8 | = 14
Answer:
The value of q is: 22 or -6

Explanation:
The given absolute value equation is:
| q – 8 | = 14
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
q – 8 = 14                                                      q – 8 = -14
q = 14 + 8                                                     q = -14 + 8
q = 22                                                             q = -6
Hence, from the above,
We can conclude that the value of q is: 22 or -6

Question 17.
| -3d | = 15

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q17

Question 18.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 68
Answer:
The value of t is: 12 or -12

Explanation:
The given absolute value equation is:
| t / 2 | = 12
We know that,
| x | = x  for x > 0
| x | = -x for x < 0
So,
t / 2 = 6                                       t / 2 = -6
t = 6 × 2                                      t = 6 × -2
t = 12                                           t = -12
Hence, from the above,
We can conclude that the value of t is: 12 or -12

Question 19.
| 4b – 5 | = 19

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q19

Question 20.
| x – 1 | + 5 = 2
Answer:
The given absolute value equation has no solution

Explanation:
The given absolute value equation is:
| x – 1 | + 5 = 2
| x – 1 | = 2 – 5
| x – 1  | = -3
We know that,
The absolute value of an equation must be greater than or equal to zero
So,
| x – 1 | = -3 has no solution
Hence, from the above,
We can conclude that the given absolute value equation has no solution

Question 21.
-4 | 8 – 5n | = 13

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q21

Question 22.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 69
Answer:
The value of y is: -3 or 6

Explanation:
The given absolute value equation is:
-3 | 1 – ( 2 / 3 ) y | = -9
| 1 – (2 / 3  ) y | = -9 ÷ ( -3 )
| 1 – ( 2 / 3 ) y | = 3
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
1 – ( 2 / 3 ) y = 3                                    1 – ( 2 /3 ) y = -3
2/3 y = 1 – 3                                           2/3 y = 1 + 3
2 / 3 y = -2                                              2 / 3 y = 4
2y = -2 × 3                                               2y = 4 × 3
2y = -6                                                      2y = 12
y = -6 ÷ 2                                                  y = 12 ÷ 2
y = -3                                                         y = 6
Hence, from the above,
We can conclude that the value of y is: -3 or 6

Question 23.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 70

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q23

Question 24.
9 | 4p + 2 | + 8 = 35
Answer:
The value of p is: 1 / 4 or -5 / 4

Explanation:
The given absolute value equation is:
9 | 4p + 2 | + 8 = 35
9 | 4p + 2 | = 35 – 8
9 | 4p + 2 | = 27
| 4p + 2 | = 27 ÷ 9
| 4p + 2 | = 3
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
4p + 2 = 3                    4p + 2 = -3
4p = 3 – 2                     4p = -3 – 2
4p = 1                           4p = -5
p = 1 / 4                         p = -5 / 4
Hence, from the above,
We can conclude that the value of p is: 1 / 4 or -5 / 4

Question 25.
WRITING EQUATIONS
The minimum distance from Earth to the Sun is 91.4 million miles. The maximum distance is 94.5 million miles.
a. Represent these two distances on a number line.
b. Write an absolute value equation that represents the minimum and maximum distances.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q25

Question 26.
WRITING EQUATIONS
The shoulder heights of the shortest and tallest miniature poodles are shown.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 71
a. Represent these two heights on a number line.
b. Write an absolute value equation that represents these heights.

Answer:
a)
The number line that represents the two heights on a number line is:

b)
The minimum shoulder height = ( 15 – 10 ) / 2
= 5 / 2
= 2.5 inches
The maximum shoulder height = 10 + 2.5
= 12.5 inches
Now,
Let the heights between poodles be x.
Hence,
The absolute value equation is:
| x – 12.5 | = 2.5

USING STRUCTURE In Exercises 27−30, match the absolute value equation with its graph without solving the equation.

Question 27.
| x + 2 | = 4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q27

Question 28.
| x + 4 | = 2
Answer:
The given absolute value equation is:
| x + 4 | = 2
To find the halfway point, made the absolute value equation equal to 0.
So,
| x + 4  | = 0
So,
x = -4
From the given absolute value equation,
We can say that the distance from the halfway point to the minimum and maximum points is: 2

Question 29.
| x – 2 | = 4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q29

Question 30.
| x + 4 | = 2
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 72

Answer:

In Exercises 31−34, write an absolute value equation that has the given solutions.

Question 31.
x = 8 and x = 18

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q31

Question 32.
x = -6 and x = 10
Answer:
The given absolute value equation is:
| x – 2 | = 8

Explanation:
The given values of x are:
x = -6 and x = 10
Now,
The halfway point between 10 and -6 = [ 10 – ( -6 ) ] / 2
= [ 10 + 6 ] / 2
= 16 / 2
= 8
The minimum distance from the halfway point = 8 – 6 = 2
Hence,
The absolute value equation is:
| x – 2 | = 5

Question 33.
x = 2 and x = 9

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q33

Question 34.
x = -10 and x = -5

Answer:
The given values of x are:
x = -10 and x = -5
Now,
The halfway point between -10 and -5 = [ 10 – ( 5 ) ] / 2
= [ 10 – 5 ] / 2
= 5 / 2
= 2.5
So,
The minimum value from the half-point = 2.5 + ( -10 )
= 2.5 – 10
= -7.5
Hence,
The absolute value equation is:
| x – ( -7.5 ) | = 2.5
| x + 7.5 | = 2.5

In Exercises 35−44, solve the equation. Check your solutions. 

Question 35.
| 4n – 15 | = | n |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q35

Question 36.
| 2c + 8 | = | 10c |
Answer:
The values of c are: 1 and 2 / 3

Explanation:
The given absolute value equation is:
| 2c + 8 | = | 10c |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
Now,
2c + 8 = 10c                                      2c + 8 = -10c
10c – 2c = 8                                       2c + 10c = 8
8c = 8                                                12c = 8
c = 8 / 8                                              c = 8 / 12
c = 1                                                    c = 2 /3
Hence, from the above,
We can conclude that the values of c are: 1 and 2 / 3

Question 37.
| 2b – 9 | = | b – 6 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q37

Question 38.
| 3k – 2 | = 2 | k + 2 |
Answer:
The values of k are: 6 and -2 / 5

Explanation:
The given absolute equation is:
| 3k – 2 | = 2 | k + 2 |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
2 ( k + 2 ) = 3k – 2                                            2 ( k + 2 ) = – ( 3k – 2 )
2k + 4 = 3k – 2                                                 2k + 4 = -3k + 2
3k – 2k = 4 + 2                                                 2k + 3k = 2 – 4
k = 6                                                                 5k = -2
k = 6                                                                 k = -2 / 5
Hence, from the above,
We can conclude that the values of k are: 6 and -2 / 5

Question 39.
4 | p – 3 | = | 2p + 8 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q39

Question 40.
2 | 4w – 1 | = 3 | 4w + 2 |
Answer:
The value of w is: -2

Explanation:
The given absolute value equation is:
2 | 4w – 1 | = 3 | 4w+ 2 |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
2 ( 4w – 1 ) = 3 ( 4w + 2 )                        -2 ( 4w – 1 ) = -3 ( 4w + 2 )
8w – 2 = 12w + 6                                      -8w + 2 = -12w -6
12w – 8w = -6 – 2                                      -12w + 8w = 6 + 2
4w = -8                                                       -4w = 8
w = -8 / 4                                                      w = 8 / -4
w = -2                                                            w = -2
Hence, from the above,
We can conclude that the value of w is: -2

Question 41.
| 3h + 1 | = 7h

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q41

Question 42.
| 6a – 5 | = 4a
Answer:
The value of a is: 5 / 2 and 1 / 2

Explanation:
The given absolute value equation is:
| 6a – 5 | = 4a
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
6a – 5 = 4a                                                6a – 5 = -4a
6a – 4a = 5                                                 6a + 4a = 5
2a = 5                                                         10a = 5
a = 5 / 2                                                       a = 5 / 10
a = 5 / 2                                                       a = 1 / 2
Hence, from the above,
We can conclude that the values of a are: 5 / 2 and 1 / 2

Question 43.
| f – 6 | = | f + 8 |

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q43

Question 44.
| 3x – 4 | = | 3x – 5 |
Answer:
The given absolute value equation has no solution

Explanation:
The given absolute value equation is:
| 3x – 4 | = | 3x – 5 |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
3x – 4 = 3x – 5                                – ( 3x – 4 ) = – ( 3x – 5 )
4 = 5                                                 4 = 5
Hence, from the above,
We can conclude that the given absolute value equation has no solution

Question 45.
MODELING WITH MATHEMATICS
Starting from 300 feet away, a car drives toward you. It then passes by you at a speed of 48 feet per second. The distance d (in feet) of the car from you after t seconds is given by the equation d = | 300 – 48t |. At what times is the car 60 feet from you?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q45

Question 46.
MAKING AN ARGUMENT
Your friend says that the absolute value equation | 3x + 8 | – 9 = -5 has no solution because the constant on the right side of the equation is negative. Is your friend correct? Explain.
Answer:
Yes, your friend is correct

Explanation:
The given absolute value equation is:
| 3x + 8 | – 9 = -5
We know that,
The absolute value equation value must have greater than or equal to 0
But here
The value of the absolute value equation is less than 0
Hence,
The given absolute value equation has no solution.
Hence, from the above,
We can conclude that your friend is correct.

Question 47.
MODELING WITH MATHEMATICS
You randomly survey students about year-round school. The results are shown in the graph.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 73
The error given in the graph means that the actual percentage could be 5% more or 5% less than the percent reported by the survey.
a. Write and solve an absolute value equation to find the least and greatest percents of students who could be in favor of the year-round school.
b. A classmate claims that \(\frac{1}{3}\) of the student body is actually in favor of the year-round school. Does this conflict with the survey data? Explain.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q47

Question 48.
MODELING WITH MATHEMATICS
The recommended weight of a soccer ball is 430 grams. The actual weight is allowed to vary by up to 20 grams.
a. Write and solve an absolute value equation to find the minimum and maximum acceptable soccer ball weights.
Answer:
It is given that the recommended weight of a soccer ball is 430 grams and the actual weight is allowed to vary up to 20 grams
Hence,
The absolute value equation that represents the minimum and maximum acceptable soccer ball weights is:
| x – 430 | = 20
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
x – 430 = 20                               x – 430 = -20
x = 20 + 430                              x = -20 + 430
x = 460 grams                            x = 410 grams
Hence, from the above,
We can conclude that the maximum and minimum acceptable soccer weights respectively are: 460 grams and 410 grams

b. A soccer ball weighs 423 grams. Due to wear and tear, the weight of the ball decreases by 16 grams. Is the weight acceptable? Explain.
Answer:
The weight that caused due to wear and tear is not acceptable

Explanation:
From the above problem,
We get the maximum weight of the soccer ball to be 460 grams with 20 grams increase or decreased to the weight of the ball
Now,
It is given that the weight of the ball is decreased by 16 grams due to wear and tear
So,
The weight of the ball now = 460 – 16 = 444 grams
But it is given that the weight of the ball becomes 423 grams due to wear and tear.
Hence, from the above,
We can conclude that the weight is not acceptable

ERROR ANALYSIS
In Exercises 49 and 50, describe and correct the error in solving the equation.

Question 49.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 74

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q49

Question 50.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 75

Answer:
The values of x are: -2 and -4 / 3

Explanation:
The given absolute value equation is:
| 5x + 8 | = x
We know that,
| x | = x for x > 0
| x | = – x for x < 0
So,
5x + 8 = x                                                      5x + 8 = -x
5x – x = -8                                                      5x + x = -8
4x = -8                                                            6x = -8
x = -8 / 4                                                         x = -8 / 6
x = -2                                                               x = -4 / 3
Hence, from the above,
We can conclude that the values of x are: -2 and -4 / 3

Question 51.
ANALYZING EQUATIONS
Without solving completely, place each equation into one of the three categories.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 76

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q51

Question 52.
USING STRUCTURE
Fill in the equation Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 77 with a, b, c, or d so that the equation is graphed correctly.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 77.1

Answer:

ABSTRACT REASONING
In Exercises 53−56, complete the statement with always, sometimes, or never. Explain your reasoning.

Question 53.
If x2 = a2, then | x | is ________ equal to | a |.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q53

Question 54.
If a and b are real numbers, then | a – b | is _________ equal to | b – a |.
Answer:
If a and b are real numbers, then
| a – b | is equal to | b – a |

Explanation:
Let,
| a | = 5 and | b | = 9
We know that,
| x | =x for  x > 0
| x | = -x for x < 0
So,
| a – b | = | 5 – 9 |
= | -4 | = 4
| b – a | = | 9 – 5 |
=  | 4 |
= 4
Hence, from the above,
We can conclude that value of
| a – b | is equal to | b – a | if a and b are real numbers

Question 55.
For any real number p, the equation | x – 4 | = p will ________ have two solutions.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q55

Question 56.
For any real number p, the equation | x – p | = 4 will ________ have two solutions.
Answer:
For any real number,
| x – p | = 4 will have two solutions

Explanation:
The given absolute value equation is:
| x – p | = 4
Let the value of p be 1
We know that,
| x | = x for x > 0
| x | = – x for x < 0
So,
| x – 1 | = 4
| x – 1 | = 4                                        | x – 1 | = -4
x = 4 + 1                                           x = -4 + 1
x = 5                                                  x = -3
Hence, from the above,
We can conclude that
| x – p | = 4 will have two solutions for any real number p

Question 57.
WRITING
Explain why absolute value equations can have no solution, one solution, or two solutions. Give an example of each case.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q55

Question 58.
THOUGHT-PROVOKING
Describe a real-life situation that can be modeled by an absolute value equation with the solutions x = 62 and x = 72.
Answer:
Suppose in a school, an exam is conducted. In that examination, 67% of the students are passed. If the error of the pass percentage is 5 %, then what are the minimum and the maximum number of students passed in the examination?
Now,
The absolute value equation for the given real-life situation is:
| x – 67 | = 5
We know that,
| x | = x for x> 0
| x | =-x for x < 0
So,
x – 67 = 5                                         x – 67 = -5
x = 5 + 67                                        x = -5 + 67
x = 72                                               x = 62
Hence, from the above,
We can conclude that the minimum and maximum number of students passed in the examination  respectively are: 72 and 67

Question 59.
CRITICAL THINKING
Solve the equation shown. Explain how you found your solution(s).
8 | x + 2 | – 6 = 5 | x + 2 | + 3

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q59
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q59-i

Question 60.
HOW DO YOU SEE IT?
The circle graph shows the results of a survey of registered voters on the day of an election.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 78
The error given in the graph means that the actual percentage could be 2% more or 2% less than the percent reported by the survey.
a. What are the minimum and maximum percents of voters who could vote Republican?
Answer:
The minimum percentage of voters for Republicans is: 40%
The maximum percentage of voters for Republicans is: 44 %

Explanation:
The given graph is:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 78
From the graph,
The vote percentage for Republicans is: 42 %
The error percentage is: ±2%
So,
The absolute value equation for the maximum and the minimum number of voters is:
| x – 42 | = 2
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
x – 42 = 2                                                                 x – 42 = -2
x = 2 + 42                                                                x = -2 + 42
x = 44                                                                       x = 40
Hence, from the above,
We can conclude that
The minimum percentage of voters for Republicans is: 40%
The maximum percentage of voters for Republicans is: 44 %

b. How can you use absolute value equations to represent your answers in part (a)?
Answer:
From the property of absolute values,
We know that,
| x | = x for x > 0
| x | = -x for x < 0
From the part ( a ),
The absolute value equation is:
| x – 42 | = 2
So,
x – 42 = 2                                                                 x – 42 = -2
x = 2 + 42                                                                x = -2 + 42
x = 44                                                                       x = 40
Hence, from the above,
We can conclude that we can use absolute values in the above way to represent the answers

c. One candidate receives 44% of the vote. Which party does the candidate belong to? Explain.
Answer:
The candidate of the Republican party receives 44 % of the vote.

Explanation:
The given graph is:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 78
From the above graph,
We can say that,
The percentage of the vote received by the candidate of the Republican party = 42 %
The error percentage = ± 2 %
So,
Now,
The percentage of the vote received by the Republicans = 42 + 2  ( or ) 42 – 2
= 44 ( or ) 40
Hence, from the above,
We can conclude that the candidate of the Republican party received the 44 % of the vote

Question 61.
ABSTRACT REASONING
How many solutions does the equation a | x + b | + c = d have when a > 0 and c = d? when a < 0 and c > d? Explain your reasoning.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q61

Maintaining Mathematical Proficiency

Identify the property of equality that makes Equation 1 and Equation 2 equivalent. (Section 1.1)

Question 62.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 79

Answer:
The given equations are:
Equation 1: 3x + 8 = x – 1
Equation 2: 3x + 9= x
From Equation 1,
3x + 8 = x – 1
3x + 8 + 1 = x
3x + 9 = x
Hence, from the above,
We can conclude that we can get Equation2 by rearranging the Equation 1

Question 63.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 80

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q63

Use a geometric formula to solve the problem.

Question 64.
A square has an area of 81 square meters. Find the side length.
Answer:
The side length of the square is: 9 meters

Explanation:
The given area of the square is: 81 square meters
We know that,
Area of the square = Side × Side
81 = Side × Side
Side² = 81
Apply square root on both sides
√Side² = √81
Side = 9 meters
Hence, from the above,
We can conclude that the side of the square is: 9 meters

Question 65.
A circle has an area of 36π square inches. Find the radius.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q65

Question 66.
A triangle has a height of 8 feet and an area of 48 square feet. Find the base.
Answer:
The base of the triangle is: 12 feet

Explanation:
It is given that a triangle has a height of 8 feet and an area of 48 square feet
We know that,
The area of the triangle = ( 1 /  2 ) × Base × Height
48 = ( 1 / 2 ) × Base × 8
Base × 8 = 48 × 2
Base = ( 48 × 2 ) ÷ 8
Base = 96 ÷ 8
Base = 12 feet
Hence, from the above,
We can conclude that the base of the triangle is: 12 feet

Question 67.
A rectangle has a width of 4 centimeters and a perimeter of 26 centimeters. Find the length.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.4-Q67

Lesson 1.5 Rewriting Equations and Formulas

Essential Question
How can you use a formula for one measurement to write a formula for a different measurement?
Answer:
Write the formula for one measurement and then solve the formula for the different measurement you want to find and use this new formula to find that measurement
Hence, in the above way,
We can use a formula for one measurement to write a formula for a different measurement

EXPLORATION 1
Using an Area Formula
Work with a partner.

a. Write a formula for the area A of a parallelogram.
Answer:
We know that,
The area of the parallelogram ( A) = Base × Height

b. Substitute the given values into the formula. Then solve the equation for b. Justify each step.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 81
Answer:
The value of b is: 6 in

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 81
From the given figure,
Area ( A) = 30 in²
Height ( h ) = 5 in
Base = b
From part ( a),
Area of the parallelogram = Base × Height
30 = 5 × b
b = 30 ÷ 5
b = 6 in
Hence, from the above,
We can conclude that the value of b is: 6 in

c. Solve the formula in part (a) for b without first substituting values into the formula. Justify each step.
Answer:
From part ( a ),
Area of the parallelogram = Base × Height
Base = ( Area of the parallelogram ) ÷ Height of the parallelogram
From the given figure,
Base = b
So,
b = ( Area of the parallelogram ) ÷ Height of the parallelogram

d. Compare how you solved the equations in parts (b) and (c). How are the processes similar? How are they different?
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 82
Answer:
We know that,
The area of the parallelogram = Base × Height
Using the above formula,
We solved parts (b ) and ( c )

EXPLORATION 2
Using Area, Circumference, and Volume Formulas
Work with a partner. Write the indicated formula for each figure. Then write a new formula by solving for the variable whose value is not given. Use the new formula to find the value of the variable.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 83
Answer:
The given geometrical figures are:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 83
Now,
a)
The given figure is:

We know that,
Area of the trapezoid = h ( a + b ) / 2
Where,
h is the height between the two sides
a + b is the sum of the parallel sides [ Here, b1 and b2 ]
From the given figure,
Area of the trapezoid = 63 cm²
1st parallel side ( b1 ) = 8 cm
2nd parallel side ( b2 ) = 10 cm
So,
Area of the trapezoid = h ( 8 + 10 ) / 2
63 = h ( 18 ) / 2
63 × 2 = h × 18
h = ( 63 × 2 ) ÷ ( 18 × 1 )
h = 7 cm
Hence, from the above,
We can conclude that the value of h is: 7 cm
b)
The given figure is:

We know that,
Circumference of a circle = 2πr
Where
r is the radius of the circle
From the above figure,
Circumference of the circle ( C ) = 24π ft
So,
24π = 2πr
r = ( 24π ) ÷ ( 2π )
r = 12 ft
Hence, from the above,
We can conclude that the value of r is: 12 ft
c)
The given figure is:

We know that,
The volume of the rectangular prism ( V ) = Length × Width × Height
The area of the rectangle ( B) = Length × Width
So,
The volume of the rectangular prism (V ) = B × Height
From the above figure,
The volume of the rectangular prism ( V ) = 75 yd³
The area of the rectangle ( B ) = 15 yd²
So,
75 = 15 × Height
Height = 75 ÷ 15
Height = 15 yd
Hence, from the above,
We can conclude that the value of h is: 15 yd
d)
The given figure is:

We know that,
The volume of cone ( V ) = πr²h / 3
The area of the circle ( B ) = πr²
Where,
r is the radius of the circle
h is the height of the cone
So,
The volume of the cone ( V ) = Bh / 3
From the above figure,
V = 24π m³
B = 12π m³
So,
24π = 12π × h / 3
h / 3 = 24π ÷ 12π
h / 3 = 2
h = 2 × 3
h = 6 m
Hence, from the above,
We can conclude that the height of the cone is: 6 m

Communicate Your Answer

Question 3.
How can you use a formula for one measurement to write a formula for a different measurement? Give an example that is different from those given in Explorations 1 and 2.
Answer:
Write the formula for one measurement and then solve the formula for the different measurement you want to find and use this new formula to find that measurement
Example:
The given figure is:

We know that,
The area of the rectangle ( A ) = Length × Width
From the above figure,
A = 20 cm²
L = 10 cm
Let,
W be the width of the rectangle
So,
20 = 10 × W
W = 20 ÷ 10
W = 2 cm
Hence, from the above,
We can conclude that the value of W is: 2 cm

1.5 Lesson

Monitoring Progress

Solve the literal equation for y.

Question 1.
3y – x = 9
Answer:
The value of y is: ( x + 9 ) / 3

Explanation:
The given equation is:
3y – x = 9
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
3y = 9 + x
y = ( x + 9 ) / 3
Hence, from the above,
We can conclude that the value of y is: ( x + 9 ) / 3

Question 2.
2x – 2y = 5
Answer:
The value of y is: ( 2x – 5 ) / 2

Explanation:
The given equation is:
2x – 2y = 5
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
2y = 2x – 5
y = ( 2x – 5 ) / 2
Hence, from the above,
We can conclude that the value of y is: ( 2x – 5 ) / 2

Question 3.
20 = 8x + 4y
Answer:
The value of y is: 5 – 2x

Explanation:
The given equation is:
20 = 8x + 4y
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4y = 20 – 8x
y = ( 20 – 8x ) / 4
y = ( 20 ÷ 4 ) – ( 8x ÷ 4 )
y = 5 – 2x
Hence, from the above,
We can conclude that the value of y is: 5 – 2x

Solve the literal equation for x.

Question 4.
y = 5x – 4x
Answer:
The value of x is: y

Explanation:
The given equation is:
y = 5x – 4x
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x = y
Hence, from the above,
We can conclude that the value of x is: y

Question 5.
2x + kx = m
Answer:
The value of x is: m / ( k + 2  )

Explanation:
The given equation is:
2x + kx = m
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
x ( k + 2 ) = m
x = m / ( k + 2 )
Hence, from the above,
We can conclude that the value of x is: m / ( k + 2 )

Question 6.
3 + 5x – kx = y
Answer:
The value of x is: ( y – 3 ) / ( 5 – k )

Explanation:
The given equation is:
3 + 5x – kx = y
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5x – kx = y – 3
x ( 5 – k ) = y – 3
x = ( y – 3 ) / ( 5 – k )
Hence, from the above,
We can conclude that the value of x is: ( y – 3 ) / ( 5 – k )

Solve the formula for the indicated variable. 

Question 7.
Area of a triangle: A = \(\frac{1}{2}\)bh; Solve for h.
Answer:
The value of h is: \(\frac{2A}{b}\)

Explanation:
The given area of a triangle is:
A = \(\frac{1}{2}\) bh
bh = 2A
h = \(\frac{2A}{b}\)
Hence, from the above,
We can onclude that the value of h is: \(\frac{2A}{b}\)

Question 8.
The surface area of a cone: S = πr2 + πrℓ; Solve for ℓ.
Answer:
The value of l is: \(\frac{S}{πr}\) – r

Explanation:
The given surface area of a cone is:
S = πr² + πrl
S= πr ( r + l )
r + l = \(\frac{S}{πr}\)
l = \(\frac{S}{πr}\) – r
Hence, from the above,
We can conclude that the value of l is: \(\frac{S}{πr}\) – r

Monitoring Progress

Question 9.
A fever is generally considered to be a body temperature greater than 100°F. Your friend has a temperature of 37°C. Does your friend have a fever?
Answer:
Your friend does not have a fever

Explanation:
It is given that a fever is generally considered to be a body temperature greater than 100°F.
We know that,
To convert Fahrenheit into Celsius,
°C = ( °F – 32 ) × \(\frac{5}{9}\)
°C = ( 100 – 32 ) × \(\frac{5}{9}\)
°C = 68 × \(\frac{5}{9}\)
°C = 37.7°
But it is given that your friend has a temperature of 37°C
So, for fever, the temperature has to be 37.7°C
Hence, from the above,
We can conclude that your friend does not have a fever

Question 10.
How much money must you deposit in a simple interest account to earn $500 in interest in 5 years at 4% annual interest?
Answer:
The money you deposit in simple interest is: $2,500

Explanation:
It is given that you earned $500 in a simple interest to earn in 5 years at 4% annual interest
Let,
The money you deposited be: $x
We know that,
Simple interest = ( Principle × Time × Rate ) / 100
The principle is the money you deposited
So,
500 = ( x × 5 × 4 ) / 100
( x × 5 × 4 ) = 500 × 100
x × 20 = 500 × 100
x = ( 500 × 100 ) ÷ 20
x = $2,500
Hence, from the above,
We can conclude that the money you deposited is: $2,500

Question 11.
A truck driver averages 60 miles per hour while delivering freight and 45 miles per hour on the return trip. The total driving time is 7 hours. How long does each trip take?
Answer:
The time taken for each trip is: 3 hours and 4 hours respectively

Explanation:
It is given that a truck driver averages 60 miles per hour while delivering freight and 45 miles per hour on the return trip. The total driving time is 7 hours.
We know that,
Speed = \(\frac{Distance}{Time}\)
Time = \(\frac{Distance}{Speed}\)
Let the distance be D
It is given that the total driving time is: 7 hours
So,
7 = \(\frac{D}{60}\) + \(\frac{D}{45}\)
7 / D = \(\frac{60 + 45}{60 × 45}\)
7 / D = \(\frac{105}{2,700}\)
D = 7 / \(\frac{105}{2,700}\)
D = 7 × \(\frac{2,700}{105}\)
D = \(\frac{7}{1}\) × \(\frac{2,700}{105}\)
D = \(\frac{7 × 2,700}{1 × 105}\)
D = 180 miles
So,
The time taken to deliver = \(\frac{180}{60}\) = 3 hours
The time taken to return = \(\frac{180}{45}\) = 4 hours
Hence, from the above,
We can conclude that the time taken for each trip is: 3 hours and 4 hours respectively

Rewriting Equations and Formulas 1.5 Exercices

Vocabulary and Core Concept Check

Question 1.
VOCABULARY
Is Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 84 a literal equation? Explain.
Answer:
The ” Literal equation” is an equation that contains only letters
Now,
The given equation is:
9r + 16 = π / 5
From the above definition,
We can say that the given equation is a ” Literal equation ”

Question 2.
DIFFERENT WORDS, SAME QUESTION?
Which is different? Find “both” answers.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 85
Answer:
The given problems are:
a) Solve 3x + 6y = 24 for x
b) Solve 24 – 3x = 6y for x
c) Solve 6y = 24 – 3x in terms of x
d) Solve 24 – 6y = 3x for x in terms of y
So,
From the above-given problems,
We can observe that d) is different as we have to find x in terms of y whereas in the remaining three problems, we have to find x

Monitoring Progress and Modeling with Mathematics

In Exercises 3–12, solve the literal equation for y.

Question 3.
y – 3x = 13

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q3

Question 4.
2x + y = 7
Answer:
The value of y is: 7 – 2x

Explanation:
The given literal equation is:
2x + y = 7
Now,
y = 7 – 2x
Hence, from the above,
We can conclude that the value of y is: 7 – 2x

Question 5.
2y – 18x = -26

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q5

Question 6.
20x + 5y = 15
Answer:
The value of y is: 3 – 4x

Explanation:
The given literal equation is:
20x + 5y = 15
Now,
5y = 15 – 20x
y = ( 15 – 20x ) / 5
y = ( 15  / 5 ) – ( 20x / 5 )
y = 3 – 4x
Hence, from the above,
We can conclude that the value of y is: 3 – 4x

Question 7.
9x – y = 45

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q7

Question 8.
6 – 3y = -6
Answer:
The value of y is: 4

Explanation:
The given literal equation is:
6 – 3y = -6
-3y = -6 – ( +6 )
-3y = -6 -6
-3y = -12
y = -12 ÷ ( -3 )
y = 12 ÷ 3
y = 4
Hence, from the above,
We can conclude that the value of y is: 4

Question 9.
4x – 5 = 7 + 4y

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q9

Question 10.
16x + 9 = 9y – 2x
Answer:
The value of y is: 18x + 9

Explanation:
The given literal equation is:
16x + 9 = y – 2x
So,
16x + 2x + 9 = y
18x + 9 = y
y = 18x + 9
Hence, from the above,
We can conclude that the value of y is: 18x + 9

Question 11.
2 +\(\frac{1}{6}\)y = 3x + 4

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q11

Question 12.
11 – \(\frac{1}{2}\)y = 3 + 6x
Answer:
The value of y is: 16 – 12x

Explanation:
The given literal equation is:
11 – \(\frac{1}{2}\)y = 3 + 6x
So,
–\(\frac{1}{2}\)y = 3 + 6x – 11
-y = 2 ( 3 + 6x – 11 )
y = -2 ( 3 + 6x – 11 )
y = -2 ( 3 ) -2 ( 6x ) + 2 ( 11 )
y = -6 – 12x + 22
y = 16 – 12x
Hence, from the above,
We can conclude that the value of y is: 16 – 12x

In Exercises 13–22, solve the literal equation for x.

Question 13.
y = 4x + 8x

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q13

Question 14.
m = 10x – x
Answer:
The value of x is: m / 9

Explanation:
The given literal equation is:
m = 10x – x
m = 9x
x = m / 9
Hence, from the above,
We can conclude that the value of x is: m / 9

Question 15.
a = 2x + 6xz

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q15

Question 16.
y = 3bx – 7x
Answer:
The value of x is: y / ( 3b – 7 )

Explanation:
The given literal equation is:
y = 3bx – 7x
So,
y = x ( 3b – 7 )
x = y / ( 3b – 7 )
Hence, from the above,
We can conclude that the value of x is: y / ( 3b – 7 )

Question 17.
y = 4x + rx + 6

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q17

Question 18.
z = 8 + 6x – px
Answer:
The value of x is: ( z – 8 ) / ( 6 – p )

Explanation:
The given literal equation is:
z = 8 + 6x – px
So,
z – 8 = 6x – px
z – 8 = x ( 6 – p )
x = ( z – 8 ) / ( 6 – p )
Hence, from the above,
We can conclude that the value of x is: ( z – 8 ) / ( 6 – p )

Question 19.
sx + tx = r

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q19

Question 20.
a = bx + cx + d
Answer:
The value of x is: ( a – d ) / ( b + c )

Explanation:
The given literal equation is:
a = bx + cx + d
a – d = bx + cx
a – d = x ( b + c )
x = ( a – d ) / ( b + c )
Hence, from the above,
We can conclude that the value of x is: ( a – d ) / ( b + c )

Question 21.
12 – 5x – 4kx = y

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q21

Question 22.
x – 9 + 2wx = y
Answer:
The value of x is: ( y – 9 ) / ( 1 – 2w )

Explanation:
The given literal equation is:
x – 9 + 2wx = y
x – 2wx = y + 9
x ( 1 – 2w ) = y + 9
x = ( y – 9 ) / ( 1 – 2w )
Hence, from the above,
We can conclude that the value of x is: ( y – 9 ) / ( 1 – 2w )

Question 23.
MODELING WITH MATHEMATICS
The total cost C (in dollars) to participate in a ski club is given by the literal equation C = 85x + 60, where x is the number of ski trips you take.
a. Solve the equation for x.
b. How many ski trips do you take if you spend a total of $315? $485?
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 86

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q23

Question 24.
MODELING WITH MATHEMATICS
The penny size of a nail indicates the length of the nail. The penny size d is given by the literal equation d = 4n – 2, where n is the length (in inches) of the nail.
a. Solve the equation for n.
b. Use the equation from part (a) to find the lengths of nails with the following penny sizes: 3, 6, and 10.
Answer:
a)
The given literal equation is:
d = 4n – 2
Where,
n is the length ( in inches ) of the nail
So,
4n = d + 2
n = ( d + 2 ) / 4
b)
It is given that,
The penny sizes ( d ) are: 3, 6, and 10
From part ( a ),
The literal equation is:
n = ( d + 2  ) / 4
Put, d= 3, 6 and 10
So,
n = ( 3 + 2 ) /4 = 5 / 4 inches
n = ( 6 + 2 ) / 4 = 2 inches
n = ( 10 + 2 ) / 4 = 3 inches

ERROR ANALYSIS
In Exercises 25 and 26, describe and correct the error in solving the equation for x.

Question 25.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 87

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q25

Question 26.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 72.1

Answer:
The given literal equation is:
10 = ax – 3b
So,
ax = 10 + 3b
x = ( 10 + 3b ) / a

In Exercises 27–30, solve the formula for the indicated variable.

Question 27.
Profit: P = R – C; Solve for C.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q27

Question 28.
Surface area of a cylinder: S = 2πr2 + 2πrh; Solve for h.
Answer:
The given Surface area of a cylinder is:
S = 2πr² + 2πrh
So,
S = 2πr ( r + h )
S / 2πr = r + h
h = S / 2πr – r
Hence, from the above,
We can conclude that the value of h is: S / ( 2π

Question 29.
Area of a trapezoid: A = \(\frac{1}{2}\)h(b1 + b2); Solve for b2.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q29

Question 30.
The average acceleration of an object: Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 88; Solve for v1.
Answer:
The given average acceleration of an object is:
a = ( v1 – v0 ) / t
So,
at = v1 – v0
v1 = at + v0
Hence, from the above,
We can conclude that the value of v1 is: at + v0

Question 31.
REWRITING A FORMULA
A common statistic used in professional football is the quarterback rating. This rating is made up of four major factors. One factor is the completion rating given by the formula
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 88.1
where C is the number of completed passes and A is the number of attempted passes. Solve the formula for C.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q31

Question 32.
REWRITING A FORMULA
Newton’s law of gravitation is given by the formula
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 89
where F is the force between two objects of masses m1 and m2, G is the gravitational constant, and d is the distance between the two objects. Solve the formula for m1.
Answer:
The value of m1 is: Fd² / Gm2

Explanation:
The given Newton’s law of gravitation is given by:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 89
where
F is the force between two objects of masses m1 and m2
G is the gravitational constant
d is the distance between the two objects.
Now,
( m1m2 ) = Fd² / G
m1 = Fd² / Gm2
Hence, from the above,
We can conclude that the value of m1 is: Fd² / Gm2

Question 33.
MODELING WITH MATHEMATICS
The sale price S (in dollars) of an item is given by the formula S = L – rL, where L is the list price (in dollars) and r is the discount rate (in decimal form).
a. Solve the formula for r.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 90
b. The list price of the shirt is $30. What is the discount rate?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q33

Question 34.
MODELING WITH MATHEMATICS
The density d of a substance is given by the formula d = \(\frac{m}{V}\), where m is its mass and V is its volume.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 91
a. Solve the formula for m?
Answer:
The given density d of a substance is given by:
d = \(\frac{m}{V}\)
So,
d × V = m
Hence, from the above,
We can conclude that the value of m is: d × V

b. Find the mass of the pyrite sample.
Answer:
The mass of the pyrite sample is: 6.012 gm

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 91
From the above figure,
The density of Pyrite = 5.01 g/cm³
The volume of Pyrite = 1.2 cm³
From part (a),
The mass of Pyrite = Density × Volume
So,
The mass of Pyrite ( m ) = 5.01 × 1.2
= 6.012 gm
Hence, from the above,
We can conclude that the mass of Pyrite is: 6.012 gm

Question 35.
PROBLEM-SOLVING
You deposit $2000 in an account that earns simple interest at an annual rate of 4%. How long must you leave the money in the account to earn $500 in interest?

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q35

Question 36.
PROBLEM-SOLVING
A flight averages 460 miles per hour. The return flight averages 500 miles per hour due to a tailwind. The total flying time is 4.8 hours. How long is each flight? Explain.
Big Ideas Math Algebra 1 Answer Key Chapter 1 Solving Linear Equations 91.1

Answer:
The time taken for flight is: 2.5 hours
The time taken for return is: 2.3 hours

Explanation:
It is given that a flight averages 460 miles per hour. The return flight averages 500 miles per hour due to a tailwind. The total flying time is 4.8 hours.
We know that,
Speed = Distance / Time
Time = Distance / Speed
It is also given that the total flying time is 4.8 hours
Let the distance be D
So,
\(\frac{D}{460}\) + \(\frac{D}{500}\) = 4.8
\(\frac{460 + 500}{230,000}\) = 4.8 / D
\(\frac{960}{230,000}\) = 4.8 / D
D = 4.8 × \(\frac{230,000}{960}\)
D = 1,150 miles
Hence,
The time taken for flight = 1,150 ÷ 460 = 2.5 hpurs
The time taken for return = 1,150 ÷ 500 = 2.3 hours

Question 37.
USING STRUCTURE
An athletic facility is building an indoor track. The track is composed of a rectangle and two semicircles, as shown.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 92
a. Write a formula for the perimeter of the indoor track.
b. Solve the formula for x.
c. The perimeter of the track is 660 feet, and r is 50 feet. Find x. Round your answer to the nearest foot.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q37

Question 38.
MODELING WITH MATHEMATICS
The distance d (in miles) you travel in a car is given by the two equations shown, where t is the time (in hours) and g is the number of gallons of gasoline the car uses.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 93
a. Write an equation that relates g and t.
Answer:
The given equations are:
d = 55t ——————— (1)
d = 20g ——————— (2)
By the law of Equality,
55t = 20g [ As the LHS for both the equations are equal, make the RHS equal ]
t / g = 20 / 55
t / g = 4 / 11

b. Solve the equation for g.
Answer:
From the given figure,
d = 20g
d = 55t
From part (a),
t / g = 4 / 11
11t = 4g
g = 11t / 4
Hence, from the above,
We can conclude that the value of g is: 11t / 4

c. You travel for 6 hours. How many gallons of gasoline does the car use? How far do you travel? Explain.
Answer:
From part (b),
g = 11t / 4
Where,
g is the number of gallons of gasoline
It is given that you travel for 6 hours
So,
t = 6 hours
Now,
g = ( 11 × 6 ) / 4
g = 66/4 gallons
Hence, from the above,
We can conclude that the number of gallons of gasoline is: 66 / 4 gallons

Question 39.
MODELING WITH MATHEMATICS
One type of stone formation found in Carlsbad Caverns in New Mexico is called a column. This cylindrical stone formation connects to the ceiling and the floor of a cave.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 94
a. Rewrite the formula for the circumference of a circle, so that you can easily calculate the radius of a column given its circumference.
b. What is the radius (to the nearest tenth of a foot) of a column that has a circumference of 7 feet? 8 feet? 9 feet?
c. Explain how you can find the area of a cross-section of a column when you know its circumference.

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q39

Question 40.
HOW DO YOU SEE IT?
The rectangular prism shown has bases’ with equal side lengths.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 95
a. Use the figure to write a formula for the surface area S of the rectangular prism.
Answer:
The given figure is:
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 95
From the above figure,
The surface area of the rectangular prism ( S) = 2 ( lb + bh + lh )
Where,
l is the length of the rectangular prism
b is the Width of the rectangular prism
h is the height of the rectangular prism

b. Your teacher asks you to rewrite the formula by solving for one of the side lengths, b or ℓ. Which side length would you choose? Explain your reasoning.
Answer:
From part (a),
The surface area of the rectangular prism ( S ) = 2 ( lb + bh + lh )
S / 2 = lb + bh + lh
S / 2 = b ( l + h ) + bh
S / 2 = b ( l + b + h )
b = S / 2 ( l + b + h )
Hence, from the above,
We can conclude that the value of b is: S / 2 ( l + b + h )

Question 41.
MAKING AN ARGUMENT
Your friend claims that Thermometer A displays a greater temperature than Thermometer B. Is your friend correct? Explain your reasoning.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 96

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q41

Question 42.
THOUGHT-PROVOKING
Give a possible value for h. Justify your answer. Draw and label the figure using your chosen value of h.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 97

Answer:
The completed figure is:

The value of h is: 5 cm

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 97
From the given figure,
We can say that the geometrical figure is the parallelogram
We know that,
Area of the parallelogram = Base × Height
From the given figure,
Area of the parallelogram = 40 cm²
The base of the parallelogram = 8 cm
So,
40 = 8 × Height
Height = 40 ÷ 8
Height = 5 cm
Hence, from the above,
We can conclude that
The completed figure is:

The value of h is: 5 cm

MATHEMATICAL CONNECTIONS
In Exercises 43 and 44, write a formula for the area of the regular polygon. Solve the formula for the height h.

Question 43.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 98

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q43

Question 44.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 99

Answer:
The value of h is: A / 3b

Explanation:
The given figure is:
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 99
From the above figure,
We can say that the figure is Hexagon
Now,
The Hexagon with the six triangles is:

So,
From the figure,
There are 6 triangles
We know that,
The area of a triangle = \(\frac{1}{2}\) × Base × Height
So,
The area of the Hexagon = The area of the 6 triangles
= 6 ( \(\frac{1}{2}\) ) × Base × Height
Let,
The area of the Hexagon be A
The height of the hexagon be h
The Base of the hexagon be b
So,
A = 6 ( \(\frac{1}{2}\) ) × Base × Height
A = 3 × Base × Height
Base × Height = A / 3
Height = A / ( 3 × Base )
So,
h = A / 3b
Hence, from the above,
We can conclude that the value of h is: A / 3b

REASONING
In Exercises 45 and 46, solve the literal equation for a.

Question 45.
Big Ideas Math Algebra 1 Solutions Chapter 1 Solving Linear Equations 100

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q45

Question 46.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 101
Answer:
The value of a is: \(\frac{by}{y – bx}\)

Explanation:
The given literal equation is:
y = x [ \(\frac{ab}{a – b}\)
\(\frac{ab}{a – b}\) = y / x
x ( ab ) = y ( a – b )
abx = ay – by
by = ay – abx
by = a ( y – bx )
a = \(\frac{by}{y – bx}\)
Hence, from the above,
We can conclude that the value of a is: \(\frac{by}{y – bx}\)

Maintaining Mathematical Proficiency

Evaluate the expression.

Question 47.
15 – 5 + 52

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q47

Question 48.
18 • 2 – 42 ÷ 8
Answer:
The given expression is:
18 ⋅ 2 – 4² ÷ 8
We have to remember that,
When there is an expression to solve with multiple mathematical symbols, we have to follow the BODMAS rule
BODMAS indicates the hierarchy we have to follow when we will solve mathematical symbols
In BODMAS,
B – Brackets
O – Of
D – Division
M – Multiplication
A – Addition
S – Subtraction
So,
18 ⋅ 2 – 4² ÷ 8 = 18 ⋅ 2 – ( 4 × 4 ) ÷ 8
= 18 ⋅ 2 – 2
= 36 – 2
= 34

Question 49.
33 + 12 ÷ 3 • 5

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q49

Question 50.
25(5 – 6) + 9 ÷ 3
Answer:
The given expression is:
25(5 – 6) + 9 ÷ 3
We have to remember that,
When there is an expression to solve with multiple mathematical symbols, we have to follow the BODMAS rule
BODMAS indicates the hierarchy we have to follow when we will solve mathematical symbols
In BODMAS,
B – Brackets
O – Of
D – Division
M – Multiplication
A – Addition
S – Subtraction
So,
25(5 – 6) + 9 ÷ 3 = ( 2 × 2 × 2 × 2 × 2 ) ( 5 – 6 ) + ( 9 ÷ 3 )
= ( 2 × 2 × 2 × 2 × 2 ) ( 5 – 6 ) + 3
= ( 2 × 2 × 2 × 2 × 2 ) ( -1 ) + 3
= -( 2 × 2 × 2 × 2 × 2 )  + 3
= -32 + 3
= -29

Solve the equation. Graph the solutions, if possible. (Section 1.4)

Question 51.
| x – 3 | + 4 = 9

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q51

Question 52.
| 3y – 12 | – 7 = 2
Answer:
The values of y are: 7 and 1

Explanation:
The given absolute value equation is:
| 3y – 12 | – 7 = 2
| 3y – 12 | = 2 + 7
| 3y – 12 | = 9
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
3y – 12 = 9                      3y – 12 = -9
3y = 9 + 12                     3y = -9 + 12
3y = 21                            3y = 3
y = 21 / 3                         y = 3 / 3
y = 7                                y = 1
Hence, from the above,
We can conclude that the values of y are: 7 and 1

Question 53.
2 | 2r + 4 | = -16

Answer:
Big-Ideas-Math-Algebra-1-Answers-Chapter-1-Solving-Linear-Equations-Lesson-1.5-Q53

Question 54.
-4 | s + 9 | = -24
Answer:
The value of s is: -3 and -15

Explanation:
The given absolute value equation is:
-4 | s + 9 | = -24
| s + 9 | = -24 ÷ ( -4 )
| s + 9 | = 6 [ Since – ÷ – = + ]
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
s + 9 = 6                                       s + 9 = -6
s = 6 – 9                                         s = -6 – 9
s = -3                                             s = -15
Hence, from the above,
We can conclude that the values of s are: -3 and -15

Solving Linear Equations Performance Task: Magic of Mathematics

1.4–1.5 What Did You Learn?

Core Vocabulary
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 102

Core Concepts
Section 1.4
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 103
Section 1.5
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 104

Mathematical Practices

Question 1.
How did you decide whether your friend’s argument in Exercise 46 on page 33 made sense?
Answer:
On page 33 in Exercise 46,
The given absolute equation is:
| 3x + 8 | – 9 = -5
| 3x + 8 | = -5 + 9
| 3x + 8 | = 4
So, from the absolute equation,
We can say that the given absolute value equation has a solution
But, according to your friend,
The argument is that the absolute value equation has no solution

Question 2.
How did you use the structure of the equation in Exercise 59 on page 34 to rewrite the equation?
Answer:
The given absolute value equation in Exercise 59 on page 34 is:
8 | x + 2 | – 6 = 5 | x + 2 | + 3
The above equation can be re-written as:
8 | x + 2  | – 5  | x + 2 | = 3 + 6
3 | x + 2  | = 9
Hence, from the above,
We can conclude that the re-written form of the given absolute value equation is:
3 | x + 2 | = 9

Question 3.
What entry points did you use to answer Exercises 43 and 44 on page 42?
Answer:
In Exercises 43 and 44 on page 42,
We used the triangles as an entry point
In Exercise 43,
The given figure is a pentagon
Using the above entry point,
We divided the pentagon into 5 triangles
In Exercise 44,
The given figure is a Hexagon
Using the above entry point,
We divided the hexagon into 6 triangles.

Performance Task

Magic of Mathematics

Have you ever watched a magician perform a number trick? You can use algebra to explain how these types of tricks work.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 105
To explore the answers to these questions and more, go to Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 106

Solving Linear Equations Chapter Review

1.1 Solving Simple Equations (pp. 3–10)

a. Solve x − 5 = −9. Justify each step.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 106.1

b. Solve 4x = 12. Justify each step.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 107

Solve the equation. Justify each step. Check your solution.

Question 1.
z + 3 = -6
Answer:
The value of z is: -9

Explanation:
The given equation is:
z + 3 = -6
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
z = -6 – ( +3 )
z = -6 – 3
z = -9
Hence, from the above,
We can conclude that the value of z is: -9

Question 2.
2.6 = -0.2t
Answer:
The value of t is: -13

Explanation:
The given equation is:
2.6 = -0.2t
\(\frac{26}{10}\) = –\(\frac{2}{10}\)t
t = \(\frac{26}{10}\) ÷ ( –\(\frac{2}{10}\) )
t = – \(\frac{26}{10}\) × \(\frac{10}{2}\)
t = -13
Hence, from the above,
We can conclude that the value of t is: -13

Question 3.
– \(\frac{n}{5}\) = -2
Answer:
The value of n is: 10

Explanation:
The given equation is:
–\(\frac{n}{5}\) = -2
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-n = -2 × 5
-n = -10
n = 10
Hence, from the above,
We can conclude that the value of n is: 10

1.2 Solving Multi-Step Equations (pp. 11–18)

Solve −6x + 23 + 2x = 15.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 108

Solve the equation. Check your Solution.

Question 4.
3y + 11 = -16
Answer:
The value of y is: -9

Explanation:
The given equation is:
3y + 11 = -16
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
3y = -16 – 11
3y = -27
y = -27 ÷ 3
y = -9
Hence, from the above,
We can conclude that the value of y is: -9

Question 5.
6 = 1 – b
Answer:
The value of b is: -5

Explanation:
The given equation is:
6 = 1 – b
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
b = 1 – 6
b = -5
Hence, from the above,
We can conclude that the value of b is: -5

Question 6.
n + 5n + 7 = 43
Answer:
The value of n is: 6

Explanation:
The given equation is:
n + 5n + 7 = 43
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
6n + 7 = 43
6n = 43 – 7
6n = 36
n = 36 ÷ 6
n = 6
Hence, from the above,
We can conclude that the value of n is: 6

Question 7.
-4(2z + 6) – 12 = 4
Answer:
The value of z is: -5

Explanation:
The given equation is:
-4 ( 2z + 6 ) – 12 = 4
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
-4 ( 2z + 6 ) = 4 + 12
-4 ( 2z + 6 ) = 16
-4 ( 2z ) – 4 ( 6 ) = 16
-8z – 24 = 16
-8z = 16 + 24
-8z = 40
z = 40 ÷ ( -8 )
z = -5
Hence, from the above,
We can conclude that the value of z is: -5

Question 8.
\(\frac{3}{2}\)(x – 2) – 5 = 19
Answer:
The value of x is: 18

Explanation:
The given equation is:
\(\frac{3}{2}\) ( x – 2 ) – 5 = 19
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
\(\frac{3}{2}\) ( x – 2 ) = 19 + 5
\(\frac{3}{2}\) ( x – 2 ) = 24
x – 2 = 24 × \(\frac{2}{3}\)
x – 2 = \(\frac{24}{1}\) × \(\frac{2}{3}\)
x – 2 = 16
x = 16 + 2
x = 18
Hence, from the above,
We can conclude that the value of x is: 18

Question 9.
6 = \(\frac{1}{5}\)w + \(\frac{7}{5}\)w – 4
Answer:
The value of w is: \(\frac{25}{4}\)

Explanation:
The given equation is:
6 = \(\frac{1}{5}\)w + \(\frac{7}{5}\)w – 4
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
6 + 4 = \(\frac{1}{5}\)w + \(\frac{7}{5}\)w
10 = w [ \(\frac{1 + 7}{5}\) ]
10 = \(\frac{8}{5}\)w
w = 10 × \(\frac{5}{8}\)
w = \(\frac{10}{1}\) × \(\frac{5}{8}\)
w = \(\frac{25}{4}\)
Hence, from the above,
We can conclude that the value of w is: \(\frac{25}{4}\)

Find the value of x. Then find the angle measures of the polygon.

Question 10.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 109

Answer:
The angle measures of the given polygon are: 110°, 50°, 20°

Explanation:
The given figure is:
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 109
From the above figure,
The angle measures are: 110°, 5x°, 2x°
It is also given that
The sum of the angle measures = 180°
So,
110 + 5x + 2x = 180°
7x = 180 – 110
7x = 70°
x = 70 / 7
x = 10°
Hence, from the above,
We can conclude that the angle measures of the given polygon are: 110°, 50°, 20°

Question 11.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 110

Answer:
The angle measures of the given polygon are: 126°, 126°, 96°, 96°, 96°

Explanation:
The given figure is:
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 110
From the above figure,
The angle measures of the given polygon are: ( x – 30 )°, x°, x°, ( x – 30 )°, ( x – 30 )°
It is also given that,
The sum of the angle measures of the given polygon = 540°
So,
( x – 30 )° + x° + x° + ( x – 30 )° + ( x – 30 )° = 540°
5x – 90° = 540°
5x = 540° + 90°
5x = 630°
x = 630 / 5
x = 126°
Hence,f rom the above,
We can conclude that the angle measures of the given polygon are: 126°, 126°, 96°, 96°, 96°

1.3 Solving Equations with Variables on Both Sides (pp. 19–24)

Solve 2( y − 4) = −4( y + 8).
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 111

Solve the equation.

Question 12.
3n – 3 = 4n + 1
Answer:
The value of n is: -4

Explanation:
The given equation is:
3n – 3 = 4n + 1
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4n – 3n = -1 – 3
n = -4
Hence, from the above,
We can conclude that the value of n is: -4

Question 13.
5(1 + x) = 5x + 5
Answer:
The given equation has no solution

Explanation:
The given equation is:
5 ( 1 + x ) = 5x + 5
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
5 ( 1 ) + 5 ( x ) = 5x + 5
5 + 5x = 5x + 5
5 = 5x – 5x + 5
5 = 5
Hence, from the above,
We can conclude that the given equation has no solution

Question 14.
3(n + 4) = \(\frac{1}{2}\)(6n + 4)
Answer:
The given equation has no solution

Explanation:
The given equation is:
3 ( n + 4 ) = \(\frac{1}{2}\) ( 6n + 4 )
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
3 ( n ) + 3 ( 4 ) = \(\frac{1}{2}\) ( 6n + 4 )
3n + 12 = \(\frac{1}{2}\) ( 6n + 4 )
2 ( 3n + 12 ) = 6n + 4
2 ( 3n ) + 2 ( 12 ) = 6n + 4
6n + 24 = 6n + 4
24 = 6n – 6n + 4
24 = 4
Hence, from the above,
We can conclude that the given equation has no solution

1.4 Solving Absolute Value Equations (pp. 27–34)

a. Solve | x − 5 | = 3.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 112

b. Solve | 2x + 6 | = 4x. Check your solutions.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 113

Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 114

Check the apparent solutions to see if either is extraneous.
The solution is x = 3. Reject x = -1 because it is extraneous.

Solve the equation. Check your solutions.

Question 15.
| y + 3 | = 17
Answer:
The value of y is: 14 or -20

Explaantion:
The given absolute value equation is:
| y + 3 | = 17
We know that,
| x | = x for x  0
| x | = -x for x < 0
So,
y + 3 = 17                               y + 3 = -17
y = 17 – 3                                y = -17 – 3
y = 14                                      y = -20
Hence, from the above,
We can conclude that the value of y is: 14 or -20

Question 16.
-2 | 5w – 7 | + 9 = -7
Answer:
The value of w is: 3 or –\(\frac{1}{5}\)

Explanation:
The given absolute value equation is:
-2 | 5w – 7 | + 9 = -7
-2 | 5w – 7 | = -7 – 9
-2 | 5w – 7 | = -16
| 5w – 7 | = -16 / ( -2 )
| 5w – 7 | = 8
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
5w – 7 = 8                                     5w – 7 = -8
5w = 8 + 7                                    5w = -8 + 7
5w = 15                                         5w = -1
w = 15 ÷ 5                                     w = –\(\frac{1}{5}\)
w = 3                                              w =-\(\frac{1}{5}\)
Hence, from the above,
We can conclude that the value of w is: 3 or –\(\frac{1}{5}\)

Question 17.
| x – 2 | = | 4 + x |
Answer:
The given absolute equation has no solution

Explanation:
The given absolute value equation is:
| x – 2 | = | 4 + x |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
x – 2 = 4 + x                                                   – ( x – 2 ) = – ( 4 + x )
-2 = 4                                                                2 = -4
Hence, from the above,
We can conclude that the given absolute equation has no solution

Question 18.
The minimum sustained wind speed of a Category 1 hurricane is 74 miles per hour. The maximum sustained wind speed is 95 miles per hour. Write an absolute value equation that represents the minimum and maximum speeds.
Answer:
The absolute value equation that represents the minimum and maximum speeds is:
| x – 84.5 | = 9.5

Explanation:
It is given that the minimum sustained wind speed of a Category 1 hurricane is 74 miles per hour. The maximum sustained wind speed is 95 miles per hour.
So,
The average wind speed sustained = ( 74 + 95 ) /2
= 169 / 2
= 84.5 miles per hour
Now,
The minimum wind speed from the average speed point = 84.5 – 74
= 9.5 miles per hour
So,
The absolute value equation that represents the minimum and maximum wind speed is:
| x – 84.5 | = 9.5

1.5 Rewriting Equations and Formulas (pp. 35–42)
a. The slope-intercept form of a linear equation is y = mx + b. Solve the equation for m.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 115

b. The formula for the surface area S of a cylinder is S = 2πr2 + 2πrh. Solve the formula for the height h.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 116

Solve the literal equation for y.

Question 19.
2x – 4y = 20
Answer:
The value of y is: ( x / 2 ) – 5

Explanation:
The given literal equation is:
2x – 4y = 20
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4y = 2x – 20
y = ( 2x – 20 ) / 4
y = ( 2x / 4 ) – ( 20 / 4 )
y = ( x / 2 ) – 5
Hence, from the above,
We can conclude that the value of y is: ( x / 2 ) – 5

Question 20.
8x – 3 = 5 + 4y
Answer:
The value of y is: 2x – 2

Explanation:
The given literal equation is:
8x – 3 = 5 + 4y
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
4y = 8x – 3 – 5
4y = 8x – 8
y = ( 8x – 8 ) / 4
y = ( 8x / 4 ) – ( 8 – 4 )
y = 2x – 2
Hence, from the above,
We can conclude that the value of y is: 2x – 2

Question 21.
a a = 9y + 3yx
Answer:
The value of y is: a² / ( 3x + 9 )

Explanation:
The given literal equation is:
a² = 9y + 3yx
When we convert any sign from LHS, then the sign will be converted into the opposite sign in RHS,
So,
+ in LHS is converted into – in RHS and vice-versa
× in LHS is converted into ÷ in RHS and vice-versa
So,
a² = y ( 3x + 9 )
y = a² / ( 3x + 9 )
Hence, from the above,
We can conclude that the value of y is: a² / ( 3x + 9 )

Question 22.
The volume V of a pyramid is given by the formula V = \(\frac{1}{3}\)Bh, where B is the area of the base and h is the height.
a. Solve the formula for h.
b. Find the height h of the pyramid.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 117

Answer:
a)
The value of h is: \(\frac{3V}{B}\)

Explanation:
The given formula is:
V = \(\frac{1}{3}\)Bh
Where,
B is the area of the base
h is the height
Now,
3V = Bh
h = \(\frac{3V}{B}\)
Hence, from the above,
We can conclude that the value of h is: \(\frac{3V}{B}\)

b)
The value of h is: 18 cm

Explanation:
From the given figure,
Area of the base ( B ) = 36 cm²
Volume of the base ( V ) = 216 cm³
From part (a),
h = \(\frac{3V}{B}\)
h = \(\frac{3 × 216}{36}\)
h = \(\frac{3 × 216}{36 × 1}\)
h = 18 cm
Hence, from the above,
We can conclud ethat the value of h is: 18 cm

Question 23.
The formula F = \(\frac{9}{5}\)(K – 273.15) + 32 converts a temperature from kelvin K to degrees Fahrenheit F.
a. Solve the formula for K.
b. Convert 180°F to kelvin K. Round your answer to the nearest hundredth.
Answer:
a)
The formula for K is:
K = \(\frac{5}{9}\) ( F – 32 ) + 273.15

Explanation:
The given formula for F is:
F = \(\frac{9}{5}\) ( K – 273.15 ) + 32
Now,
F – 32 = \(\frac{9}{5}\) ( K – 273.15 )
\(\frac{5}{9}\) ( F – 32 ) = K – 273.15
K = \(\frac{5}{9}\) ( F – 32 ) + 273.15
Hence, from the above,
We can conclude that the value of K is: \(\frac{5}{9}\) ( F – 32 ) + 273.15

Solving Linear Equations Chapter Test

Solve the equation. Justify each step. Check your solution.

Question 1.
x – 7 = 15
Answer:
The value of x is: 22

Explanation:
The given equation is:
x – 7 = 15
Now,
x = 15 + 7
x = 22
Hence, from the above,
We can conclude that the value of x is: 22

Question 2.
\(\frac{2}{3}\)x = 5
Answer:
The value of x is: \(\frac{15}{2}\)

Explanation:
The given equation is:
\(\frac{2}{3}\) x = 5
Now,
x = 5 × \(\frac{3}{2}\)
x = \(\frac{5}{1}\) × \(\frac{3}{2}\)
x = \(\frac{15}{2}\)
Hence, from the above,
We can conclude that the value of x is: \(\frac{15}{2}\)

Question 3
11x + 1 = -1 + x
Answer:
The value of x is: –\(\frac{1}{5}\)

Explanation:
The given equation is:
11x + 1 = -1 + x
Now,
11x – x = -1 – 1
10x = -2
x = –\(\frac{2}{10}\)
x = –\(\frac{1}{5}\)
Hence, from the above,
We can conclude that the value of x is: –\(\frac{1}{2}\)

Solve the equation.

Question 4.
2 | x – 3 | – 5 = 7
Answer:
The value of x is: 9 or -3

Explanation:
The given absolute value equation is:
2 | x – 3 | – 5 = 7
2 | x – 3 | = 7 + 5
2 | x – 3 | = 12
| x – 3 | = \(\frac{12}{2}\)
| x – 3 | = 6
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
x – 3 = 6                             x – 3 = -6
x = 6 + 3                            x = -6 + 3
x = 9                                   x = -3
Hence, from the above,
We can conclude that the value of x is: 9 or -3

Question 5.
| 2x – 19 | = 4x + 1
Answer:
The value of x is: -10 or 3

Explanation:
The given absolute value equation is:
| 2x – 19 | = 4x + 1
We know that,
| x | = x for x > 0
| x | = -x for x < 0
4x + 1 = 2x – 19                         4x + 1 = – ( 2x – 19 )
4x – 2x = -19 – 1                         4x + 2x = 19 – 1
2x = -20                                      6x = 18
x = \(\frac{-20}{2}\)      x = \(\frac{18}{6}\)
x = -10                                         x = 3
Hence, from the above,
We can conclude that the value of x is: -10 or 3

Question 6.
-2 + 5x – 7 = 3x – 9 + 2x
Answer:
The given absolute equation has no solution

Explanation:
The given equation is:
-2 + 5x – 7 = 3x – 9 + 2x
5x – 9 = 5x – 9
Hence, from the above,
We can conclude that the given absolute value equation has no solution

Question 7.
3(x + 4) – 1 = -7
Answer:
The value of x is: -6

Explanation:
The given equation is:
3 ( x + 4 ) – 1 = -7
So,
3 ( x ) + 3 ( 4 ) = -7 + 1
3x + 12 = -6
3x = -6 – 12
3x = -18
x = –\(\frac{18}{3}\)
x = -6
Hence, from the above,
We can conclude that the value of x is: -6

Question 8.
| 20 + 2x | = | 4x + 4 |
Answer:
The value of x is: 8

Explanation:
The given absolute value equation is:
| 20 + 2x | = | 4x + 4 |
We know that,
| x | = x for x > 0
| x | = -x for x < 0
So,
20 + 2x = 4x + 4
4x – 2x = 20 – 4
2x = 16
x = \(\frac{16}{2}\)
x = 8
Hence, from the above,
We can conclude that the value of x is: 8

Question 9.
\(\frac{1}{3}\)(6x + 12) – 2(x – 7) = 19
Answer:
The given equation has no solution

Explanation:
The given equation is:
\(\frac{1}{3}\) ( 6x + 12 ) – 2 ( x – 7 ) = 19
Now,
\(\frac{1}{3}\) ( 6x – 12 ) = 19 + 2 ( x – 7 )
\(\frac{1}{3}\) ( 6x – 12 ) = 19 + 2x – 14
\(\frac{1}{3}\) ( 6x – 12 ) = 2x + 5
1 ( 6x – 12 ) = 3 ( 2x + 5 )
6x – 12 = 6x + 15
6x – 6x = 15 + 12
15 = -12
Hence, from the above,
We can conclude that the given equation has no solution

Describe the values of c for which the equation has no solution. Explain your reasoning.

Question 10.
3x – 5 = 3x – c
Answer:
The value of c is: 5

Explanation:
The given equation is:
3x – 5 = 3x – c
It is given that the equation has no solution
So,
3x – 3x – 5 =-c
-c = -5
c = 5
Hence, from the above,
We can conclude that the value of c is: 5

Question 11.
| x – 7 | = c
Answer:
The value of c is: -7

Explanation:
The given absolute value equation is:
| x – 7 | = c
It is given that the equation has no solution i.e., x = 0
So,
0 – 7 = c
c = -7
Hence, from the above,
We can conclude that the value of c is: -7

Question 12.
A safety regulation states that the minimum height of a handrail is 30 inches. The maximum height is 38 inches. Write an absolute value equation that represents the minimum and maximum heights.
Answer:
The absolute value expression that represents the minimum and maximum heights is:
| x – 64 | = 34

Explanation:
It is given that a safety regulation states that the minimum height of a handrail is 30 inches. The maximum height is 38 inches.
So,
The average height of a handrail = ( 30 + 38 ) / 2
= 68 / 2
= 34 inches
Now,
The minimum height from the average height of a handrail = 34 + 30
= 64 inches
Hence,
The absolute value equation that represents the minimum and maximum height of a handrail is:
| x – 64 | = 34

Question 13.
The perimeter P (in yards) of a soccer field is represented by the formula P = 2ℓ + 2w, where ℓ is the length (in yards) and w is the width (in yards).
a. Solve the formula for w.
Answer:
The given formula is:
P = 2l + 2w
Where,
P is perimeter ( in yards )
l is the length ( in yards )
w is the width ( in yards )
So,
2w = P – 2l
w = ( P – 2l ) / 2
Hence, from the above,
We can conclude that the formula for w is:
w = ( P – 2l ) / 2

b. Find the width of the field.
Answer:
The given figure is:
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 117.1
From the above figure,
Perimeter ( P ) = 330 yd
Length ( l) = 100 yd
From part (a),
w = ( P – 2l ) /2
w = ( 330 – 100 ) / 2
w = 230 / 2
w = 115 yd
Hence, from the above,
We can conclude that the width of the field is: 115 yd

c. About what percent of the field is inside the circle?
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 117.1
Answer:

Question 14.
Your car needs new brakes. You call a dealership and a local mechanic for prices.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 118
a. After how many hours are the total costs the same at both places? Justify your answer.
Answer:
From the given table,
Let the total labor hours be x
So,
The total cost at the Dealership = ( Cost of parts ) + ( Labor cost per hour ) × ( Total labor hours )
= 24 + 99x
The total cost at the local mechanic = ( Cost of parts ) + ( Labor cost per hour ) × ( Total labor hours )
= 45 + 89x
It is given that the total cost is the same in both places
So,
24 + 99x = 45 + 89x
99x – 89x = 45 – 24
10x = 21
x = 21 / 10
x = 2.1 hours
Hence, from the above,
We can conclude that after 2.1 hours, the total cost will be the same in both places

b. When do the repairs cost less at the dealership? at the local mechanic? Explain.
Answer:
The given table is:
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 118
From the above table,
Compare the labor cost per hour
By comparison,
We can say that the labor cost per hour is less at the local mechanic
Hence, from the above,
We can conclude that the repair cost less at the local mechanic

Question 15.
Consider the equation | 4x + 20 | = 6x. Without calculating, how do you know that x = -2 is an extraneous solution?
Answer:
We know that,
The absolute value equations only accept the values greater than or equal to 0
Hence,
For the given absolute value equation,
| 4x + 20 | = 6x
x = -2 is an extraneous solution

Question 16.
Your friend was solving the equation shown and was confused by the result “-8 = -8.” Explain what this result means.
4(y – 2) – 2y = 6y – 8 – 4y
4y – 8 – 2y = 6y – 8 – 4y
2y – 8 = 2y – 8
-8 = -8
Answer:
The result ” -8 = -8 ” means that the solved equation has no solution

Solving Linear Equations Cumulative Assessment

Question 1.
A mountain biking park has 48 trails, 37.5% of which are beginner trails. The rest are divided evenly between intermediate and expert trails. How many of each kind of trail are there?
A. 12 beginner, 18 intermediate, 18 expert
B. 18 beginner, 15 intermediate, 15 expert
C. 18 beginner, 12 intermediate, 18 expert
D. 30 beginner, 9 intermediate, 9 expert

Answer:
The correct option is: B
The number of beginner trials is: 18
The number of intermediate trials is: 15
The number of expert trials is: 15

Explanation:
It is given that a mountain biking park has 48 trails, 37.5% of which are beginner trails. The rest are divided evenly between intermediate and expert trials.
So,
The number of beginner trials is 3.5 % of the total number of trials
It is given that the total number of trials is: 48
We know that,
The value of 37.5 % is: \(\frac{3}{8}\) [ 37.5 % = 50 % – 12.5 % ]
So,
The number of beginner trials = \(\frac{3}{8}\) × 48
= \(\frac{3}{8}\) × \(\frac{48}{1}\)
= \(\frac{3 × 48}{8 × 1}\)
= 18
So,
The number  of intermediate and expert trials = ( The total number of trials ) – ( The number of beginner trials )
= 48 – 18
= 30 trials
It is also given that the intermediate trials and expert trails are divided evenly
So,
30 ÷ 2 = 15 trials each
Hence, from the above,
We can conclude that
The number of beginner trials is: 18
The number of intermediate trials is: 15
The number of expert trials is: 15

Question 2.
Which of the equations are equivalent to cx – a = b?
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 119

Answer:
The given equations are:
a) cx – a + b = 2b
b) 0 = cx – a + b
c) 2cx – 2a = b / 2
d) x – a = b / 2
e) x = ( a + b ) / c
f) b + a = cx
Now,
We have to find the equations from above that is equivalent to the given equation cx – a = b
Now,
a)
The given equation is:
cx – a + b = 2b
So,
cx – a = b – b
cx – a = b
b)
The given equation is:
0 = cx – a + b
So,
cx – a = -b
c)
The given equation is:
2cx – 2a = b / 2
So,
cx – a = b / 4
d )
The given equation is:
cx – a = b / 2
So,
2 ( cx – a ) = b
e)
The given equation is:
x = ( a + b ) / c
So,
cx = a + b
cx – a = b
f)
The given equation is:
b + a = cx
So,
cx – a = b
Hence, from the above,
We can conclude that the equations that are equivalent to cx – a = b is: a, e, f

Question 3.
Let N represent the number of solutions of the equation 3(x – a) = 3x – 6. Complete each statement with the symbol <, >, or =.
a. When a = 3, N ____ 1.
b. When a = -3, N ____ 1.
c. When a = 2, N ____ 1.
d. When a = -2, N ____ 1.
e. When a = x, N ____ 1.
f. When a = -x, N ____ 1.

Answer:
The given equation is:
3 ( x – a ) = 3x – 6
So,
3x – 3a = 3x – 6
Now,
a) When a = 3,
3x – 3 ( 3 ) = 3x – 6
3x – 9 = 3x – 6
9 = 6
Hence,
When a = 3 there is no solution
Hence,
N < 1
b) When a = -3
3x + 3 ( 3 ) =3 x – 6
9 = -6
Hence,
When a = -3, there is no solution
Hence,
N < 1
c) When a = 2
3x – 3 ( 2 ) = 3x – 6
3x – 6 =3x –
6 = 6
Hence,
When a= 2, there is no solution
Hence,
N < 1
d) When a = -2
3x + 3 ( 2 ) = 3x – 6
3x + 6 = 3x – 6
6 = -6
Hence,
When a = -2, thereis no solution
Hence,
N < 1
e) When a = x
3x – 3 ( x ) = 3x – 6
3x = 6
x = 6 / 3
x = 2
Hence,
When a  x, theer is 1 solution
Hence,
N = 1
f) When a = -x
3x + 3 ( x ) = 3x – 6
6x – 3x = -6
3x = -6
x = -6 / 3
x = -2
Hence,
When a = -x, there is 1 solution
Hence,
N = 1

Question 4.
You are painting your dining room white and your living room blue. You spend $132 on 5 cans of paint. The white paint costs $24 per can, and the blue paint costs $28 per can.
a. Use the numbers and symbols to write an equation that represents how many cans of each color you bought.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 120
Answer:
The number of cans of white paint is: 2
The number of cans of blue paint is: 3

Explanation:
It is given that you spend $132 on 5 cans of paint
It is also given that the white paint costs $24 per can and the blue paint costs $28 per can
Now,
Let
The number of white cans is: x
The number of blue cans be: 5 – x
So,
The total cost of paint = ( The number of white cans ) × ( The cost of white paint per can ) + ( The number of blue cans ) × ( The cost of blue paint per can )
132 = 24x + 28 ( 5 – x )
24x + 28 ( 5 ) – 28x = 132
140 – 4x = 132
4x = 140 – 132
4x = 8
x = 8 ÷ 4
x = 2
Hence, from the above,
We can conclude that
The number of cans of white paint is: 2
The number of cans of blue paint is: 3

b. How much would you have saved by switching the colors of the dining room and living room? Explain.
Answer:
The money you have saved by switching the colors of the dining room and living room is: $0

Explanation:
From part (a),
The number of white cans is: 2
The number of blue cans is: 3
It is given that white color is used in the dining room and the blue color is used in the living room
So,
The cost of white paint after interchanging the color in the living room = 24 × 2
= $48
The cost of blue paint after interchanging the color in the dining room = 28 × 3
= $84
So,
The total cost of paint after interchanging the colors = 48 + 84
= $132
Hence,
The amount of money saved = ( The money you paid for the paint before interchanging ) – ( The money you paid for the paint after interchanging )
= 132 – 132
=$0

Question 5.
Which of the equations are equivalent?
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 121

Answer:
The given equations are:
a ) 6x + 6 = -14
b ) 8x + 6 = -2x – 14
c ) 5x + 3 = -7
d ) 7x + 3 = 2x – 13
Now,
To find the equivalent equations, find the value of x
So,
a)
The given equation is:
6x + 6 = -14
6x = -14 – 6
6x = -20
x = -20 / 6
x = -10 / 3
b)
The given equation is:
8x + 6 = -2x – 14
8x + 2x = -14 – 6
10x = -20
x = -20 / 10
x = -2
c)
The given equation is:
5x + 3 = -7
5x = -7 -3
5x = -10
x= -10 / 5
x = -2
d)
The given equation is:
7x + 3 = 2x – 13
7x – 2x = -13 – 3
5x = -16
x = -16 / 5
Hence, from the above,
We can conclude that the equations c) and d) are equivalent

Question 6.
The perimeter of the triangle is 13 inches. What is the length of the shortest side?
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 122
Answer:
The length of the shortest side is: 3 inches

Explanation:
We know that,
The perimeter is the sum of all the sides of the given figure
It is given that the perimeter of the triangle is: 13 inches
So,
The perimeter of the triangle = ( x – 5 ) + ( x / 2 ) + 6
13 = x + 1 + ( x / 2 )
13 = ( 2x / 2 ) + ( x / 2 ) + 1
3x / 2 = 13 – 1
3x / 2 = 12
3x = 12 × 2
3x = 24
x = 24 / 3
x = 8
So,
The lengths of all sides are: ( 8 – 5 ), 6, ( 8 / 2 ) = 3 inches, 6 inches, 4 inches
Hence, from the above,
We can conclude that the length of the shortest side is: 3 inches

Question 7.
You pay $45 per month for cable TV. Your friend buys a satellite TV receiver for $99 and pays $36 per month for satellite TV. Your friend claims that the expenses for a year of satellite TV are less than the expenses for a year of cable.
a. Write and solve an equation to determine when you and your friend will have paid the same amount for TV services.
Answer:
It is given that you pay $45 per month for cable TV. Your friend buys a satellite TV receiver for $99 and pays $36 per month for satellite TV
So,
Let the number of months be x
Now,
The time they paid the same amount for TV services is:
45x = 99 + 36x
45x – 36x = 99
9x= 99
x = 99 / 9
x = 11
Hence, from the above,
We can conclude that after 11 months, you and your friend will pay the same amount for TV services

b. Is your friend correct? Explain.
Answer:
Your friend is correct

Explanation:
We know that,
1 year = 12 months
So,
The expenses paid by you for TV services = 45x = 45 × 12 = $540
The expenses paid by your friend for TV services = 99 + 36x
= 99 + 36 ( 12 )
= 99 + 432
= $531
By comparing the expenses of you and your friend,
We can conclude that your friend is correct

Question 8.
Place each equation into one of the four categories.
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 123

Question 9.
A car travels 1000 feet in 12.5 seconds. Which of the expressions do not represent the average speed of the car?
Big Ideas Math Answer Key Algebra 1 Chapter 1 Solving Linear Equations 124

Answer:
We know that,
Average speed = ( Distance ) ÷ ( Time )
It is given that a car travels 1000 feet in 12.5 seconds
So,
Average speed = 1000 / 12.5
= 80\(\frac{feet}{second}\)
Now,
The given options are:
A) 80\(\frac{second}{feet}\) B) 80\(\frac{feet}{second}\) C) \(\frac{80 feet}{second}\)
D) \(\frac{second}{ 80 feet}\)
Hence, from the above,
We can conclude that option B) represents the average speed

Big Ideas Math Answers Grade 4 Chapter 2 Add and Subtract Multi-Digit Numbers

Big Ideas Math Answers Grade 4 Chapter 2

The basics must be strong to grow with perfect knowledge. Students need to learn the math basics strongly to become a master in maths. Big Ideas Math Answers Grade 4 Chapter 2 Add and Subtract Multi-Digit Numbers is the best reference to make your student’s basics strong. The Big Ideas Grade 4 Chapter 2 Add and Subtract Multi-Digit Numbers Math Answers will help your students to achieve their dreams of learning maths with simple methods. From the fundamentals of Add and Subtract Multi-Digit Numbers to difficult problems, all are given on this page.

Big Ideas 4th Grade Chapter 2 Add and Subtract Multi-Digit Numbers Math Book Answer Key

Check out the Big Ideas Math Answers Grade 4 Chapter 2 Add and Subtract Multi-Digit Numbers links provided in the below section to begin your preparation. We have given a detailed explanation for each and every problem for your better understanding. So, make use of every given link and try to score the best marks in the exams. The basics mentioned here will not only help you in the exam but also in real life. Be the first to learn the best of math topics by referring to bigideasmathanswers.com

Lesson: 1 Estimate Sum and Differences

Lesson 2.1 Estimate Sum and Differences
Estimate Sum and Differences Homework & Practice 2.1

Lesson: 2 Add Multi-Digit Numbers

Lesson 2.2 Add Multi-Digit Numbers
Add Multi-Digit Numbers Homework & Practice 2.2

Lesson: 3 Subtract Multi-Digit Numbers

Lesson 2.3 Subtract Multi-Digit Numbers
Subtract Multi-Digit Numbers Homework & Practice 2.3

Lesson: 4 Use Strategies to Add and Subtract

Lesson 2.4 Use Strategies to Add and Subtract
Use Strategies to Add and Subtract Homework & Practice 2.4

Lesson: 5 Problem Solving: Addition and Subtraction

Lesson 2.5 Problem Solving: Addition and Subtraction
Problem Solving: Addition and Subtraction Homework & Practice 2.5

Performance Task

Add and Subtract Multi-Digit Numbers Performance Task
Add and Subtract Multi-Digit Numbers Activity
Add and Subtract Multi-Digit Numbers Chapter Practice

Lesson 2.1 Estimate Sum and Differences

Explore and Grow
Estimate to find each sum by rounding to the nearest thousand, hundred, or ten. Explain why you chose to round to that place value.
A football team had 917 spectators at their first game and 872 at their second game. About how many spectators did the team have at both games?

Answer: The answer is 1789.

Explanation:
Number of spectators in First game: 917
Number of spectators in First game: 872
To get the number of spectators in both the games, we have to add the number of spectators in first game and second game.
That means, 917 + 872 = 1789.
A company budgets $1,800 for a company picnic. They spend $917 on the location and $872 on food. Did they stay within their budget?

Answer: Yes, they can stay within their budget.

Explanation:
Total budget: $1,800
Spend for location: $917
Spend for food: $872
Total spend = spend for location + spend for food.
That means, total spend = $917 + $872 = $1789.
Balance budget = Total budget – Total spend
That means, Balance budget: $1800 – $1789 = $11
As, the total spend for the company picnic is lesser than the company budget, they can stay within the budget.
Reasoning
Explain why you may choose to round to different place values in different situations.

Answer: “Round to” are the approximate values we give that are the nearest possible values to the exact values. Sometimes, we may be sufficient with the estimate or nearest values. We may not require the exact values. In such situations, we can go ahead with the round to values. For example, you organized a lunch at your home. The caterer asks you for the number of guests for whom the lunch has to be served. You cannot give him the exact number of guests. You give him the round of value of the number of guests attend based on your past experience and present situation. In such cases, round to is very helpful.
Think and Grow: Estimate Sum and Differences
An estimate is a number that is close to an exact number. You can use rounding to estimate sums and differences.
Example
Estimate 8,675 + 3,214.
One Way: Round each addend to the nearest hundred. Then find the sum.

So, 8,675 + 3,214 is about rounding the two numbers to the nearest hundreds. 8,700 is the nearest hundreds value for 8,675. 3200 is the nearest hundreds value for 3214.
Then, we will add 8,700 and 3,200.
8,700 + 3,200 = 11, 900
Another Way: Round each addend to the nearest thousand. Then find the sum.

So, 8,675 + 3,214 is about rounding the two numbers to the nearest thousands. 9,000 is the nearest thousands value for 8,675. 3,000 is the nearest thousands value for 3214.
Then, we will add 9,000 and 3,000.
9,000 + 3,000 = 12, 000
.
Example
Estimate 827,615 – 54,3006.
One Way: Round each addend to the nearest thousand. Then find the difference.

So, 827,615 – 54,306 is about rounding the two numbers to the nearest thousands. 8,28,000 is the nearest thousands value for 8,27,615. 54,000 is the nearest thousands value for 54,306.
Then, we will subtract 54,000 from 8,28,000.
8,28,000 – 54,000 = 7,74,000.
Another Way: Round each addend to the nearest ten thousand. Then find the difference.

So, 827,615 – 54,306 is about rounding the two numbers to the nearest ten thousands. 8,30,000 is the nearest thousands value for 8,27,615. 50,000 is the nearest thousands value for 54,306.
Then