Engage NY Eureka Math 5th Grade Module 6 Lesson 14 Answer Key

Eureka Math Grade 5 Module 6 Lesson 14 Problem Set Answer Key

Question 1.
Use the coordinate plane below to complete the following tasks.

a. Identify the locations of P and R. P: (_____, _____) R: (_____, _____)
b. Draw $$\overleftrightarrow{P R}$$.
c. Plot the following coordinate pairs on the plane.
S: (6, 7) T: (11, 9)
d. Draw $$\overleftrightarrow{S T}$$.
e. Circle the relationship between $$\overleftrightarrow{P R}$$ and $$\overleftrightarrow{S T}$$.
$$\overleftrightarrow{P R}$$ ⊥ $$\overleftrightarrow{S T}$$
$$\overleftrightarrow{P R}$$ ∥ $$\overleftrightarrow{S T}$$
f. Give the coordinates of a pair of points, U and V, such that $$\overleftrightarrow{U V}$$ ∥ $$\overleftrightarrow{P R}$$.
U: (_____, _____) V: (_____, _____)
g. Draw $$\overleftrightarrow{U V}$$.
a. The locations of P and R. P: (6, 4) R: (11, 6) .
b.

c.

e.

Explanation :
Both the lines are equidistant from each other so, the $$\overleftrightarrow{P R}$$ is parallel to  $$\overleftrightarrow{S T}$$ .
f. The coordinate points of u and v are U ( 6, 1) and V (11, 3)
g.

Question 2.
Use the coordinate plane below to complete the following tasks.

a. Identify the locations of E and F. E: (_____, _____) F: (_____, _____)
b. Draw $$\overleftrightarrow{E F}$$.
c. Generate coordinate pairs for L and M, such that $$\overleftrightarrow{E F}$$ ∥ $$\overleftrightarrow{L M}$$.
L: (____, ____) M: (____, ____)
d. Draw $$\overleftrightarrow{L M}$$.
e. Explain the pattern you made use of when generating coordinate pairs for L and M.
f. Give the coordinates of a point, H, such that $$\overleftrightarrow{E F}$$ ∥ $$\overleftrightarrow{G H}$$.
G: (1$$\frac{1}{2}$$, 4) H: (____, ____)
g. Explain how you chose the coordinates for H.
a. The locations of E and F. E: (1,3$$\frac{1}{2}$$ ) F: (3, 1$$\frac{1}{2}$$)
b.

c. The L and M points are L ( 3, 3$$\frac{1}{2}$$) and M ( 4$$\frac{1}{2}$$, 2)
d.

e. The pattern made when generating coordinate pairs for L and M are parallel lines .
f. G: (1$$\frac{1}{2}$$, 4) H: (3, 2$$\frac{1}{2}$$)
g. The the coordinates for H is choose such that the latex]\overleftrightarrow{E F}[/latex] ∥ $$\overleftrightarrow{G H}$$.
Explanation :
Plot the point G and then draw a parallel line from Point G such a way that it should be parallel to latex]\overleftrightarrow{E F}[/latex] .
After that take a point H on that parallel line .

Eureka Math Grade 5 Module 6 Lesson 14 Exit Ticket Answer Key

Use the coordinate plane below to complete the following tasks.

a. Identify the locations of E and F. E: (_____, _____) F: (_____, _____)
b. Draw $$\overleftrightarrow{E F}$$.
c. Generate coordinate pairs for L and M, such that $$\overleftrightarrow{E F}$$∥$$\overleftrightarrow{L M}$$.
L: (____, ____) M: (____, ____)
d. Draw $$\overleftrightarrow{L M}$$.
a. The locations of E and F. E: (2, 4) F: (5, 3) .
b.

c. The coordinate pairs for L and M, such that $$\overleftrightarrow{E F}$$∥$$\overleftrightarrow{L M}$$ are
L: (3, 5) M: (6, 4)
d.

Question 1.
Use the coordinate plane below to complete the following tasks.

a. Identify the locations of M and N. M: (_____, _____) N: (_____, _____)
b. Draw $$\overleftrightarrow{M N}$$.
c. Plot the following coordinate pairs on the plane.
J: (5, 7) K: (8, 5)
d. Draw $$\overleftrightarrow{J K}$$.
e. Circle the relationship between $$\overleftrightarrow{M N}$$ and $$\overleftrightarrow{J K}$$.
$$\overleftrightarrow{M N}$$ ⊥ $$\overleftrightarrow{J K}$$
$$\overleftrightarrow{M N}$$ ∥ $$\overleftrightarrow{J K}$$
f. Give the coordinates of a pair of points, F and G, such that $$\overleftrightarrow{F G}$$ ∥ $$\overleftrightarrow{M N}$$.
F: (_____, _____) G: (_____, _____)
g. Draw $$\overleftrightarrow{F G}$$.
a. The locations of M and N. M: (6, 4) N: (3, 6)
b.
c. The J and K are plotted on the graph .
d.

e.

Explanation :
$$\overleftrightarrow{M N}$$ and $$\overleftrightarrow{J K}$$ are Equidistant from each other so, parallel lines .

f. The coordinates of a pair of points, F and G, such that $$\overleftrightarrow{F G}$$ ∥ $$\overleftrightarrow{M N}$$.
F: (2, 4) G: (5, 2)
g.

Question 2.
Use the coordinate plane below to complete the following tasks.

a. Identify the locations of A and B. A: (____, ____) B: (____, ____)
b. Draw $$\overleftrightarrow{A B}$$.
c. Generate coordinate pairs for C and D, such that $$\overleftrightarrow{A B}$$ ∥ $$\overleftrightarrow{C D}$$.
C: (____, ____) D: (____, ____)
d. Draw $$\overleftrightarrow{C D}$$.
e. Explain the pattern you used when generating coordinate pairs for C and D.
f. Give the coordinates of a point, F, such that $$\overleftrightarrow{A B}$$ ∥ $$\overleftrightarrow{E F}$$.
E: (2$$\frac{1}{2}$$, 2$$\frac{1}{2}$$) F: (____, ____)
g. Explain how you chose the coordinates for F.
a. The locations of A and B. A: (4, 3$$\frac{1}{2}$$) B: (2 , 3)
b.

c. The coordinate pairs for C and D, such that $$\overleftrightarrow{A B}$$ ∥ $$\overleftrightarrow{C D}$$.
C: (3$$\frac{1}{2}$$, 2$$\frac{1}{2}$$) D: (5$$\frac{1}{2}$$, 3)
d.

e. The pattern you used when generating coordinate pairs for C and D are $$\overleftrightarrow{A B}$$ ∥     $$\overleftrightarrow{C D}$$.
f. The coordinates of a point, F, such that $$\overleftrightarrow{A B}$$ ∥ $$\overleftrightarrow{E F}$$.
E: (2$$\frac{1}{2}$$, 2$$\frac{1}{2}$$) F: (4$$\frac{1}{2}$$ , 3)
g.

The the coordinates for F is choose such that the latex]\overleftrightarrow{E F}[/latex] ∥ $$\overleftrightarrow{A B}$$.
Explanation :
Plot the point E and then draw a parallel line from Point E such a way that it should be parallel to latex]\overleftrightarrow{A B}[/latex] .
After that take a point F on that parallel line .